Skip to main content
Log in

Assessment of the Performance of a Distributed Code in Relation to the ETp Estimates

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This article is a preliminary report of a research activityfocusing on the effects of the crop potentialevapotranspiration (ETp) generation methods on boththe performance of a distributed catchment model as well ason the magnitude of its main effective parameters. Thereferred effects were assessed on the basis of theindependent Multi-Calibration (MC) of the distributed modelfor which three different ETp scenarios were generatedas follows: (A) FAO-24 standard approach;(B) FAO-24 approach but used with coefficients of the wind function and of the Stefan-Boltzmann equation selected according to local conditions; and (C) FAO-56 standard approach. ETp was estimated as a function of the reference crop evapotranspiration (ETo) by means of the k c-ETo approach. For assessing the performance of theestimation approach, the ETo outputs of the three scenarioswere compared to local ETo constraints derived from a previous research. The outputs of scenario B and scenario C showed a close agreement with the local ETo constraints. Their effect on the performance of the hydrological model alsoseemed to be comparable. The output of scenario A producedhigher estimates than the outputs of the other two scenarios, inthe order of 200 mm per year. The best model performance was obtained by using the estimates of scenario A. The research alsorevealed the weak dependency of the model effective parametersinspected in this preliminary research on the ETpestimating methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G. R., Pereira, L. S., Raes, D. and Martin, S.: 1998, FAO Irrigation and Drainage Paper 56: Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements, FAO, Rome, p. 300.

    Google Scholar 

  • Anderson, M. P. and Woessner, W. W.: 1992, Applied Groundwater Modelling Simulation of Flow and Advective Transport, University Press, U.S.A., p. 296.

    Google Scholar 

  • Bagarello, V. and Iovino, M.: 1999, ‘Spatial and Temporal Variability of Saturated Hydraulic Conductivity in a Central Sicily Soil’ in Proceedings of the International Workshop of EurAgEng's Field of Interest on Soil and Water ‘Modelling of Transport Processes in Soils at Various Scales in Time and Space’ Leuven, pp. 249–256.

  • Beven, K.: 1997, ‘Topmodel: A critique’ Hydrol. Processes 11, 1069–1085.

    Google Scholar 

  • Boons-Prins, E. R., De Koning, G. H. J., Van Diepen, C. A. and Penning de Vries, F. W. T.: 1993, in Simulation Report CABO-TT (Vol. 32), Crop Specific Simulation Parameters for Yield Forecasting Across the European Community, Centre for Agrobiological Research and Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, The Netherlands.

    Google Scholar 

  • Chow, V. T., Maidment, D. R. and Mays, L. W.: 1988, Applied Hydrology, McGraw-Hill International Editions, Singapore, p. 572.

    Google Scholar 

  • DHI: 1998, in MIKE-SHE v.5.3 User Guide and Technical Reference Manual, Danish Hydraulic Institute, Denmark, p. 50.

    Google Scholar 

  • Doorenbos, J. and Pruitt, W. O.: 1977, FAO Irrigation and Drainage Paper 24: Crop Water Requirements, FAO, Rome, p. 156.

    Google Scholar 

  • Edwards, W. R. N.: 1986, ‘Precision weighing lysimetry for trees, using a simplified tared-balance design’ Tree Physiol. 1, 127–144.

    Google Scholar 

  • Engman, E. T.: 1986, ‘Roughness coefficients for routing surface runoff’ J. Irrigat. Drainage Engineer. 112(1), 39–53.

    Google Scholar 

  • Feyen, L., Vázquez, R., Christiaens, K., Sels, O. and Feyen, J.: 2000, ‘Application of a distributed physically-based hydrological model to a medium size catchment’ Hydrol. Earth Syst. Sci. 4(1), 47–63.

    Google Scholar 

  • Gellens-Meulenberghs, F. and Gellens, D.: 1992, in Internal Publication (A 130) L'evapotranspiration Potentielle en Belgique: Variabilité Spatiale et Temporelle, Belgian Meteorological Institute, Brussels, p. 23.

    Google Scholar 

  • Groot, J. J. R.: 1987, in Simulation Report CABO-TT Vol. (13) Simulation of Nitrogen Balance in a System of Winter Wheat and Soil, Centre for Agrobiological Research and Department of Theoretical Production Ecology, Wageningen, p. 50.

    Google Scholar 

  • Gupta, H. V., Sorooshian, S. and Yapo, P. O.: 1998, ‘Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information’ Water Resour. Res. 34(4), 751–763.

    Google Scholar 

  • Hubrechts, L., Vlassak, V., Van Criekingen, A. and Feyen, J.: 1997, in Internal Publication (48) Handleiding bij AARDEWERK-SISBIS: Bevraginssysteem voor Bodemprofielgegevens, Bodemoppervlaktegegevens en Bodemgeschiktheids-gegevens, Institute for Land and Water Management (K.U. Leuven), Leuven, p. 56.

    Google Scholar 

  • Hupet, F. and Vanclooster, M.: 2001, ‘Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration’ J. Hydrol. 243, 192–204.

    Google Scholar 

  • Jensen, M. E., Burman, R. D. and Allen, R. G.: 1990, ASCE Manuals and Reports on Engineeering Practice 70: Evapotranspiration and Irrigation Water Requirements, ASCE, New York, p. 332.

    Google Scholar 

  • Katz, R. W.: 1999, ‘Extreme value theory for precipitation: Sensitivity analysis for climate change’ Advan. Water Resour. 23(2), 133–139.

    Google Scholar 

  • Kristensen, K. J. and Jensen, S. E.: 1975, ‘A model for estimating actual evapotranspiration from potential evapotranspiration’ Nordic Hydrol. 6, 170–188.

    Google Scholar 

  • Legates, D. R. and McCabe, G. J.: 1999, ‘Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimate model validation’ Water Resour. Res. 35(1), 233–241.

    Google Scholar 

  • Loague, K. and Green, R. E.: 1991, ‘Statistical and graphical methods for evaluating solute transport models: Overview and applications’ J. Contam. Hydrol. 7, 51–73.

    Google Scholar 

  • Lundberg, A., Calder, I. and Harding, R.: 1998, ‘Evaporation of intercepted snow: Measurement and modelling’ J. Hydrol. 206, 151–163.

    Google Scholar 

  • Morton, F. I.: 1978, ‘Estimating evapotranspiration from potential evaporation-practicality of an iconoclastic approach’ J. Hydrol. 38, 1–32.

    Google Scholar 

  • Motovilov, Y. G., Gottschalk, L., Engeland, K. and Rodhe, A.: 1999, ‘Validation of a distributed hydrological model against spatial observations’ Agricult. Forest Meteorol. 98–99, 257–277.

    Google Scholar 

  • Nash, J. E. and Sutcliffe, J. V.: 1970, ‘River flow forecasting through conceptual models: A discussion of principles’ J. Hydrol. 10, 282–290.

    Google Scholar 

  • Penman, H. L.: 1948, ‘Natural Evaporation from Open Water, Bare Soil and Grass’ Proceedings of the Royal Society of London, Series A 193, pp. 120–146.

    Google Scholar 

  • Raes, D., Van Aelst, P. and Wyseure, G.: 1986, in ETREF, ETCROP, ETSPLIT and DEFICIT, a Computer Package for Calculating Crop Water Requirements-Reference Manual, Laboratory of Soil and Water Engineering, Leuven, 66.

    Google Scholar 

  • Refsgaard, J. C. and Storm, B.: 1995, ‘MIKE SHE’ V. P. Singh (ed.), in Computer Models of Watershed Hydrology, Water Resources Publications, U.S.A., pp. 809–846.

    Google Scholar 

  • Refsgaard, J. C. and Knudsen, J.: 1996, ‘Operational validation and inter-comparison of different types of hydrological models’ Water Resour. Res. 32(7), 2189–2202.

    Google Scholar 

  • Refsgaard, J. C.: 1997, ‘Parameterisation, calibration and validation of distributed hydrological models’ J. Hydrol. 198, 69–97.

    Google Scholar 

  • Stedinger, J. R., Vogel, R. M. and Foufoula-Georgiou, E. F.: 1993, ‘Frequency Analysis of Extreme Events’ in D. R. Maidment (ed.), Handbook of Hydrology, McGraw Hill, U.S.A., pp. 18.1–18.66.

    Google Scholar 

  • Sumner, D. M.: 1996, in Water-Resources Investigations Report (96–4244) Evapotranspiration from Successional Vegetation in a Deforested Area of Lake Wales, Florida, U.S. Geological Survey, p. 37.

    Google Scholar 

  • Thom, A. S. and Oliver, H. R.: 1977, ‘On Penman's equation for estimating regional evaporation’ J. Royal Meteorol. Soc. 103, 345–357.

    Google Scholar 

  • Van Genuchten, M. Th.: 1980, ‘A closed form equation for predicting the hydraulic conductivity in unsaturated soils’ Soil Sci. Soc. Amer. J. 44, 892–898.

    Google Scholar 

  • VanOrshoven, J., Maes, J., Vereecken, H. and Feyen, J.: 1991, ‘A procedure for the statistical characterization of the units of the Belgian soil map’ Pedologie XLI(3), 193–212.

    Google Scholar 

  • Vázquez, R. F., Feyen, L., Feyen, J. and Refsgaard, J. C.: 2002, ‘Effect of grid-size on effective parameters and model performance of the MIKE SHE code applied to a medium sized catchment’ Hydrol. Process. 16, 355–372.

    Google Scholar 

  • Vereecken, H.: 1988, in ‘Pedotransferfunctions for the Generation of Hydraulic Properties for Belgian Soils’ Ph.D. Thesis, Laboratory of Land Management (K.U. Leuven), Leuven, p. 254.

    Google Scholar 

  • Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D. and Wullschlenger, S. D.: 2001, ‘A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance’ Agricult. Forest Meteorol. 106, 153–168.

    Google Scholar 

  • Xevi, E., Christiaens, K., Espino, A., Sewnandan, W., Mallants, D., Sørensen, H. and Feyen, J.: 1997, ‘Calibration, validation and sensitivity abalysis of the MIKE-SHE model using the Neuenkirchen catchment on case study’ Water Resour. Manag. 11, 219–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Vázquez Z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez Z, R.F., Feyen, J. Assessment of the Performance of a Distributed Code in Relation to the ETp Estimates. Water Resources Management 16, 329–350 (2002). https://doi.org/10.1023/A:1021903211213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021903211213

Navigation