Advertisement

Plasma Chemistry and Plasma Processing

, Volume 19, Issue 1, pp 1–31 | Cite as

Thermal Plasma Technology: Where Do We Stand and Where Are We Going?

  • E. Pfender
Article

Abstract

In this overview, an attempt is made to assess the present and future research and development in thermal plasma processing of materials restricted to (1) thermal plasma coating technologies, (2) thermal plasma synthesis of fine powders, (3) thermal plasma waste destruction, and (4) thermal plasma spheroidization and densification. Since thermal plasma processing is, in general, governed by a large number of parameters, implementation of controls becomes mandatory. The lack of sufficient controls combined with economic drawbacks in some cases has been the main obstacle for the growth of thermal plasma technology. Present R&D efforts, however, address these problems.

Thermal plasma technology assessment research and development overview 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Spores and E. Pfender, “Flow structure of a turbulent thermal plasma jet,” Surf. Coat. Technol. 37, 251 (1989).Google Scholar
  2. 2.
    R. Spores, “Analysis of the flow structure of a turbulent thermal plasma jet,” Ph.D. Thesis, University of Minnesota-Minneapolis (1989).Google Scholar
  3. 3.
    E. Pfender, J. Fincke, and R. Spores, “Entrainment of cold gas into thermal plasma jets,” Plasma Chem. Plasma Process. 11, 529 (1991).Google Scholar
  4. 4.
    R. W. Schefer, V. Hartmann, and R. W. Dibble, AIAA J. 25, 1318 (1987).Google Scholar
  5. 5.
    M. Brossa and E. Pfender, “Probe measurements in thermal plasma jets,” Plasma Chem. Plasma Process. 8, 75 (1988).Google Scholar
  6. 6.
    S. A. Wutzke, “Conditions governing the symptomatic behavior of an electric arc in a superimposed flow field,” Ph.D. Thesis, University of Minnesota-Minneapolis (1967).Google Scholar
  7. 7.
    S. A. Wutzke, E. Pfender, and E. R. G. Eckert, “Study of electric-arc behavior with superimposed flow,” AIAA J. 5, 707 (1967).Google Scholar
  8. 8.
    M. P. Planche, Z. Duan, O. Lagnoux, J. Heberlein, P. Fauchais, and E. Pfender, “Study of arc fluctuations with different plasma spray torch configurations”, Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, pp. 1460–1465 (1997).Google Scholar
  9. 9.
    M. P. Collares and E. Pfender, “Magnetic probe measurements in plasma spray torches,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, pp. 1466–1470 (1997).Google Scholar
  10. 10.
    S. Paik, P. C. Huang, J. Heberlein, and E. Pfender, “Determination of the arc-root position in a dc plasma torch,” Plasma Chem. Plasma Process. 13, 379–397 (1993).Google Scholar
  11. 11.
    W. Finkelnburg and H. Maecker, “Electric arcs and thermal plasmas,” Encyclopedia of Physics, Vol. XXII, Springer, Berlin (1956).Google Scholar
  12. 12.
    Th. Peters, Z. Phys. 144, 612 (1956).Google Scholar
  13. 13.
    S. Malmberg, “Analysis of the plasma jet structure, particle motion, and coating quality during dc plasma spraying,” Ph.D. Thesis, University of Minnesota-Minneapolis (1994).Google Scholar
  14. 14.
    P. Fauchais, J. F. Coudert, and M. Vardelle, “Diagnostics in thermal plasma processing,” Plasma Diagnostics, Vol. I (O. Anciello and D. L. Flamm, eds.), Academic Press, New York (1989).Google Scholar
  15. 15.
    D. B. Spalding, “Two-fluid models of turbulence,” CFDU Report CFD/85/4, CFDU, Imperial College, London (1985).Google Scholar
  16. 16.
    D. B. Spalding, “A turbulence model for buoyant and combusting flows,” CFDU Report CFD/86/4, CFDU, Imperial College, London (1986).Google Scholar
  17. 17.
    D. B. Spalding, Int. J. Physiochem. Hydrodynam. 4, 323 (1983).Google Scholar
  18. 18.
    P. C. Huang, J. Heberlein, and E. Pfender, “A two-fluid model of turbulence for a thermal plasma jet,” Plasma Chem. Plasma Process. 15, 25–46 (1995).Google Scholar
  19. 19.
    P. C. Huang, “A turbulent swirling arc model and a two-fluid turbulence model for thermal plasma sprays,” Ph.D. Thesis, University of Minnesota-Minneapolis (1993).Google Scholar
  20. 20.
    D. Apelian, D. Wei, and M. Paliwal, Thin Solid Films 118, 395 (1984).Google Scholar
  21. 21.
    Y. P. Chyou and E. Pfender, “Behavior of particulates in thermal plasma flows,” Plasma Chem. Plasma Process. 9, 45–71 (1989).Google Scholar
  22. 22.
    C. H. Chang, “Numerical simulation of alumina spraying in argon-helium plasma jet,” Proceedings of the International Thermal Spray Conference (Orlando, Florida), (June 1992), p. 793.Google Scholar
  23. 23.
    J. H. Park, Z. Duan, J. Heberlein, E. Pfender, Y. C. Lau, and H. P. Wang, “Modeling of fluctuations experienced in N2 and N2/H2 plasma jets issuing into atmospheric air,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. I, pp. 326–331 (1997).Google Scholar
  24. 24.
    P. Fauchais, A. C. Léger, M. Vardelle, and A. Vardelle, “Formation of plasma-sprayed oxide coatings,” Proceedings of the Julian Szekely Memorial Symposium on Materials Processing and the TMS Fall Extraction & Processing Conference, edited by H. Y. Sohn, J. W. Evans, and D. Apelian (Cambridge, Massachusetts), (October, 1997), pp. 571–592.Google Scholar
  25. 25.
    H.-D. Steffens, Z. Babiak, and M. Wewel, IEEE Trans. Plasma Sci. 18, 974 (1989).Google Scholar
  26. 26.
    M. L. Thorpe, Adv. Mater. Process. 134, 69 (1988).Google Scholar
  27. 27.
    D. R. Marantz and D. R. Marantz, Proceedings of the 3rd National Thermal Spray Conference, p. 113 (1990).Google Scholar
  28. 28.
    E. Sampson and L. Leider, Proceedings of the 5th National Thermal Spray Conference, p. 271 (1993).Google Scholar
  29. 29.
    E. R. Sampson, Proceedings of the 5th National Thermal Spray Conference, p. 257 (1993).Google Scholar
  30. 30.
    X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, “Effect of gas velocity and particle velocity on coating adhesion in wire arc spraying,” Proceedings of the 9th National Thermal Spray Conference, Thermal Spray: Practical Solutions for Engineering Problems, edited by C. C. Berndt, published by ASM International, (1996), pp. 807–811.Google Scholar
  31. 31.
    X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, “Effect of shrouded CO2 gas atomization on coating properties in wire arc spray,” Proceedings of the 8th National Thermal Spray Conference (Houston, Texas), (1995), pp. 31–37.Google Scholar
  32. 32.
    R. F. Heile and D. C. Hill, Welding J. p. 201–205 (1975).Google Scholar
  33. 33.
    P. J. Wewitt and A. A. Hirst, Ann. Occup. Hyg. 37, 297 (1993).Google Scholar
  34. 34.
    M. Ushio, K. Nakata, M. Tanaka, H. Tong, and T. Mita, Trans. JWRI 23, 21 (1994).Google Scholar
  35. 35.
    T. Watanabe, X. Wang, J. Heberlein, and E. Pfender, “Flume generation mechanism in wire arc spraying,” ISPC-12 (Minneapolis, Minnesota, 1995), Vol. II, pp. 889–894.Google Scholar
  36. 36.
    T. Watanabe, X. Wang, J. Heberlein, E. Pfender, and W. Herwig, “Voltage and current fluctuations in wire arc spraying as indications for coating properties,” Proceedings of the 9th National Thermal Spray Conference, Thermal Spray: Practical Solutions for Engineering Problems, edited by C. C. Berndt, published by ASM International, (1996), pp. 577–583.Google Scholar
  37. 37.
    E. R. G. Eckert and E. Pfender, “Advances in plasma heat transfer,” Adv. Heat Transfer 4, 229–313 (1967).Google Scholar
  38. 38.
    Z. P. Lu, J. Heberlein, and E. Pfender, “Process study of thermal plasma chemical vapor deposition of diamond, Part I: Substrate material, temperature, and methane concentration,” Plasma Chem. Plasma Proc. 12, 35–52 (1992).Google Scholar
  39. 39.
    Z. P. Lu, J. Heberlein, and E. Pfender, “Process study of thermal plasma chemical vapor deposition of diamond, Part II: Pressure dependence and effect of substrate pretreatment,” Plasma Chem. Plasma Proc. 12, 55–69 (1992).Google Scholar
  40. 40.
    K. A. Snail, C. M. Marks, Z. P. Lu, J. Heberlein, and E. Pfender, “High temperature, high rate homoepitaxial synthesis of diamond in a thermal plasma reactor,” Mater. Lett. 12, 301–305 (1991).Google Scholar
  41. 41.
    Z. P. Lu, K. Snail, C. Marks, J. Heberlein, and E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. 2nd Int. Symp. Diamond Mater. (The Electrochemical Society, Washington, DC, 1991), Vol. 91-8, pp. 99–106.Google Scholar
  42. 42.
    P. Greuel, H. Yoon, D. Ernie, and J. Roberts, Mater. Res. Soc. Symp. Proc. 334, 141 (1994).Google Scholar
  43. 43.
    P. Greuel, J. Roberts, and D. Ernie, Proceedings of the 12th International Symposium on Plasma Chemistry, edited by J. Heberlein, D. Ernie, and J. Roberts (Minneapolis, Minnesota), Vol. IV, p. 2209 (1995).Google Scholar
  44. 44.
    B. W. Yu, “A model for chemical vapor deposition of diamond in a radio-frequency induction thermal plasma,” Ph.D. Thesis, University of Minnesota-Minneapolis (1994).Google Scholar
  45. 45.
    B. W. Yu and S. L. Girshick, “Atomic carbon vapor as a diamond growth precursor in thermal plasmas,” J. Appl. Phys. 75, 3914–3923 (1994).Google Scholar
  46. 46.
    M. Asmann, C. F. M. Borges, J. Heberlein, and E. Pfender, “Thermal plasma chemical vapor deposition of diamond on steel,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, pp. 1206–1211 (1997).Google Scholar
  47. 47.
    C. Tsai, J. Nelson, W. Gerberich, J. Heberlein, and E. Pfender, “Metal reinforced thermal plasma diamond coatings,” J. Mater. Res. 7, 1967–1969 (1992).Google Scholar
  48. 48.
    C. Tsai, J. C. Nelson, and W. W. Gerberich, J. Heberlein, and E. Pfender, “Diamond-metal composite coatings on cemented carbide tools,” Diamond Relat. Mater. 2, 617–620 (1993).Google Scholar
  49. 49.
    T. Yoshida, T. Tani, H. Nishimura, and K. Akashi, J. Appl. Phys. 2, 640 (1983).Google Scholar
  50. 50.
    A. Kumar and R. Roy, J. Mater. Res. 3, 1373 (1989).Google Scholar
  51. 51.
    P. Kong and E. Pfender, Proceedings of the 2nd Int. Conf. Ceram. Powder Processing Sci. (Berchtesgaden, 1988).Google Scholar
  52. 52.
    P. Kong and E. Pfender, Combustion and Plasma Synthesis of High Temperature Materials (Z. A. Munir and J. B. Holt, eds.), VCH Publishers, New York (1990), p. 420.Google Scholar
  53. 53.
    P. Kong, T. Or, L. Stachowicz, and E. Pfender, Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc., edited by B. J. J. Zelinski, C. J. Brinker, D. E. Clark, and D. R. Ulrich (Pittsburgh, Pennsylvania), 180, 849 (1990).Google Scholar
  54. 54.
    T. Or, Z. Lu, L. Stachowicz, P. Kong, and E. Pfender, Plasma Processing and Synthesis of Materials III, Mater. Res. Soc. Symp. Proc., edited by D. Apelian and J. Szekely (Pittsburgh, Pennsylvania), 190, 83 (1991).Google Scholar
  55. 55.
    H. Zhu, Y. C. Lau, and E. Pfender, “RF plasma synthesis of YBa2-Cu3O7 − x powders,” J. Supercond. 3, 171–175 (1990).Google Scholar
  56. 56.
    K. Terashima, T. Yoshida, and K. Akashi, Jpn. Symp. on Plasma Chemistry, p. 157 (1988).Google Scholar
  57. 57.
    T. Ono, M. Kagawa, Y. Syono, M. Ikebe, and Y. Muto, Plasma Chem. Plasma Process. 7, 201 (1987).Google Scholar
  58. 58.
    H. Zhu, Y. C. Lau, and E. Pfender, “Deposition of YBa2Cu3O7 − x thick films by the spray-ICP technique,” Proc. 9th Int. Symp. Plasma Chem. (Pugnochiuso, Italy, 1989), Vol. 3, pp. 1497.Google Scholar
  59. 59.
    P. C. Kong and E. Pfender, “Chapter 14: Plasma Processes,” Carbide, Nitride and Boride Materials Synthesis and Processing (A. W. Weimer, ed.), Chapman & Hall, London (1997).Google Scholar
  60. 60.
    N. Rao, S. Girshick, J. Heberlein, P. McMurry, S. Tones, D. Hausen, and B. Micheel, Plasma Chem. Plasma Process. 15, 581 (1995).Google Scholar
  61. 61.
    T. G. Barton, “Problem waste disposal by plasma heating”, Int. Recycling Congress (Berlin), Vol. I, pp. 733–736 (1979).Google Scholar
  62. 62.
    J. V. R. Heberlein, “New developments in non-transferred plasma torch technology,” Proceedings of the 2nd Japanese Symposium on Plasma Chemistry, (1989), p. 131.Google Scholar
  63. 63.
    J. V. R. Heberlein, W. J. Melilli, S. V. Dighe, and W. H. Reed, “Adaptation of non-transferred plasma torches to new applications of plasma systems,” Proceeding of the Workshop on Industrial Plasma Applications, edited by M. I. Boulos (Pugnochiuso, Italy), (1989), p. 1.Google Scholar
  64. 64.
    M. R. Funfschilling, W. Bernhard, R. C. Eschenbach, “Test results with the plasma centrifugal furnace at Muttenz, Switzerland,” Proceedings of the 1991 Incineration Conference (Knoxville, Tennessee).Google Scholar
  65. 65.
    R. C. Eschenbach, “Use of plasma torches for melting special metals and for destroying and stabilizing hazardous wastes,” Proceedings of the Workshop on Industrial Plasma Applications, edited by M. Boulos (Pugnochiuso, Italy), (1989), pp. 127–136.Google Scholar
  66. 66.
    R. C. Eschenbach, “Plasma centrifugal furnace for destroying hazardous wastes,” Proceedings of the 1st International EPRI Symposium (1990).Google Scholar
  67. 67.
    M. P. Schlienger, “Apparatus and method for high temperature dispoal of hazardous waste materials,” U.S. Patent 4770109 (1988).Google Scholar
  68. 68.
    M. R. Funfschilling and R. C. Eschenbach, “A plasma centrifugal furnace for treating hazardous waste, Muttenz, Switzerland,” Proceedings of the XIIth Congress International Union for Electroheat (Montreal, Canada) (1992).Google Scholar
  69. 69.
    J. W. Sears, R. C. Eschenbach, and R. A. Hill, “The plasma centrifugal furnace: A method for stabilization and decomposition of toxic and radioactive wastes,” Waste Management 10, 165 (1990).Google Scholar
  70. 70.
    R. Haun, R. Eschenbach, D. Battleson, C. Alsberg, and T. Jackson, “Site test results with the PCF-6”, Proceedings of the 1992 Incineration Conference.Google Scholar
  71. 71.
    E. Pfender, Q. Y. Han, T. W. Or, Z. P. Lu, and J. Heberlein, “Rapid synthesis of diamond by counter-flow liquid injection into an atmospheric pressure plasma jet,” Diamond Relat. Mater. 1, 127–133 (1992).Google Scholar
  72. 72.
    Q. Y. Han, T. W. Or, Z. P. Lu, J. Heberlein, and E. Pfender, “dc thermal plasma deposition of diamond films,” Thermal Plasma Applications in Materials and Metallurgical Processing, (N. El-Kaddah, ed.), TMS, Warrendale, Pennsylvania (1992), pp. 277–291.Google Scholar
  73. 73.
    C. E. G. Bennett, N. A. Kinnon, and L. S. Williams, “Sintering in gas discharges,” Nature (London) 217, 1287 (1968).Google Scholar
  74. 74.
    C. E. G. Bennett and N. A. Kinnon, “Glow discharge sintering of alumina,” Kinetics of Reactions in Ionic Systems (T. J. Gray and V. D. Frechette, eds.), Plenum Press, New York (1969), p. 408.Google Scholar
  75. 75.
    D. L. Johnson and R. R. Rizzo, “Plasma sintering of a-alumina,” Am. Ceram. Soc. Bull. 59, 467 (1980).Google Scholar
  76. 76.
    J. S. Kim and D. L. Johnson, “Plasma sintering of alumina,” Am. Ceram. Soc. Bull. 62, 620 (1980).Google Scholar
  77. 77.
    D. L. Johnson, W. B. Sanderson, J. M. Knowlton, and E. L. Kemer, “Sintering of a-Al2O3 in gas plasmas,” Adv. Ceram. 10, 656 (1985).Google Scholar
  78. 78.
    P. C. Kong, Y. C. Lau, and E. Pfender, “The effects of gas composition and gas pressure on RF sintering of MgO,” Proceedings of the MRS 1987 Spring Meeting (Anaheim, California), 98, pp. 371–375 (1987).Google Scholar
  79. 79.
    E. Pfender and Y. C. Lee, “Heat transfer analysis of the plasma sintering process,” Proceedings of the Materials Research Society (Elsevier Science Publishing Co., Inc.), 30, p. 141 (1984).Google Scholar
  80. 80.
    N. P. Tandian, “Heat transfer in RF plasma sintering: A modeling and experimental study,” Ph.D. Thesis, University of Minnesota-Minneapolis (1994).Google Scholar
  81. 81.
    N. P. Tandian and E. Pfender, “Studies of the high frequency (RF) plasma sintering process,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. IV, pp. 1630–1635 (1997).Google Scholar
  82. 82.
    N. M. Dignard and M. Boulos, “Ceramic powder spheroidization under induction plasma conditions,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, p. 1031 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • E. Pfender
    • 1
  1. 1.Department of Mechanical Engineering and ERC for Plasma-Aided ManufacturingUniversity of MinnesotaMinneapolis

Personalised recommendations