Skip to main content
Log in

Expansion of Liquid 4He Through the Lambda Transition

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Zurek suggestedNature 317 , 505; 1985) that the Kibble mechanism, through which topological defects such as cosmic strings are believed to have been created in the early Universe, can also result in the formation of topological defects in liquid 4 He, i.e. quantised vortices, during rapid quenches through the superfluid transition. Preliminary experiments (Hendry et al., Nature 368 , 315; 1994) seemed to support this idea in that the quenches produced the predicted high vortex-densities. The present paper describes a new experiment incorporating a redesigned expansion cell that minimises vortex creation arising from conventional hydrodynamic flow. The post-quench line-densities of vorticity produced by the new cell are no more than 10 10 m −2 , a value that is at least two orders of magnitude less than the theoretical prediction. We conclude that most of the vortices detected in the original experiment must have been created through conventional flow processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. J. Gill, Contemp. Phys. 39, 13 (1998).

    Google Scholar 

  2. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).

    Google Scholar 

  3. W. H. Zurek, Nature 317, 505 (1985).

    Google Scholar 

  4. W. H. Zurek, Acta Physica Polonica B 24, 1301 (1993).

    Google Scholar 

  5. W. H. Zurek, Phys. Rep. 276, (1996).

  6. I. Chuang, N. Turok, and B. Yurke, Phys. Rev. Lett. 66, 2472 (1991); I. Chuang, R. Durrer, N. Turok, and B. Yurke, Science 251, 1336 (1991).

    Google Scholar 

  7. M. J. Bowick, L. Chander, E. A. Schiff, and A. M. Srivastava, Science 263, 943 (1994).

    Google Scholar 

  8. P. C. Hendry, N. S. Lawson, R. A. M. Lee, P. V. E. McClintock, and C. D. H. Williams, Nature 368, 315 (1994).

    Google Scholar 

  9. C. Bäuerle, Y. M. Bunkov, S. N. Fisher, H. Godfrin, and G. R. Pickett, Nature 382, 332 (1996).

    Google Scholar 

  10. M. H. Ruutu, V. B. Eltsov, A. J. Gill, T. W. B. Kibble, M. Krusius, Y. G. Makhlin, B. Placais, G. E. Volovik, and W. Xu, Nature 382, 334 (1996).

    Google Scholar 

  11. M. E. Dodd, P. C. Hendry, N. S. Lawson, P. V. E. McClintock and C. D. H. Williams, Phys. Rev. Lett. 81, 3703 (1998).

    Google Scholar 

  12. H. E. Hall and W. F. Vinen, Proc. Roy. Soc. London A 238, 204 & 215 (1956).

    Google Scholar 

  13. W. F. Vinen, Proc. Roy. Soc. London A 240, 114 & 128 (1957).

    Google Scholar 

  14. W. F. Vinen, Proc. Roy. Soc. Lond. A 242, 493 (1957).

    Google Scholar 

  15. R. J. Donnelly, Quantized Vortices in He II, Cambridge University Press, Cambridge (1991).

    Google Scholar 

  16. E. Varoquaux, W. Zimmermann, Jr., and O. Avenel, in Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, A. F. G. Wyatt and H. J. Lauter (eds.), Plenum, New York (1991).

    Google Scholar 

  17. C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Phil. Trans. Roy. Soc. Lond. A 311, 433 (1984).

    Google Scholar 

  18. P. C. Hendry, N. S. Lawson, P. V. E. McClintock, C. D. H. Williams, and R. M. Bowley, Phys. Rev. Lett. 60, 604 (1988); Phil. Trans. Roy. Soc. Lond. A 332, 387 (1990).

    Google Scholar 

  19. D. D. Awshalom and K. W. Schwarz, Phys. Rev. Lett. 52, 49 (1984).

    Google Scholar 

  20. V. L. Ginsburg and L. P. Pitaevskii, Soviet Phys. JETP 34, 858 (1958).

    Google Scholar 

  21. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  22. A. Guth and P. Steinhardt, in The New Physics, P. C. W. Davies (ed.), Cambridge University Press, Cambridge (1989).

    Google Scholar 

  23. P. C. Hendry, N. S. Lawson, R. A. M. Lee, P. V. E. McClintock, and C. D. H. Williams, J. Low Temp. Physics 93, 1059 (1993).

    Google Scholar 

  24. K. W. Schwarz and J. R. Rozen, Phys. Rev. Lett. 66, 1898 (1991).

    Google Scholar 

  25. J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993).

    Google Scholar 

  26. P. C. Hendry and P. V. E. McClintock, Cryogenics 27, 131 (1987).

    Google Scholar 

  27. G. C. Straty and E. D. Adams, Rev. Sci. Instrum. 40, 1393 (1969).

    Google Scholar 

  28. M. E. Dodd, Ph.D. Thesis, University of Lancaster (1998).

  29. W. F. Vinen, Creation of Quantized Vortex Rings at the λ-Transition in Liquid Helium-4, unpublished.

  30. F. V. Kustmartsev, Phys. Rev. Lett. 76, 1880 (1996).

    Google Scholar 

  31. R. A. M. Lee, Ph.D. Thesis, University of Lancaster (1994).

  32. P. Laguna and W. H. Zurek, Phys. Rev. Lett. 78, 2519 (1997).

    Google Scholar 

  33. G. A. Williams, J. Low Temp. Phys. 93, 1079 (1993); and “Vortex loop phase transitions in liquid helium, cosmic strings and high T c superconductors,” preprint cond-mat/9807338.

    Google Scholar 

  34. G. Karra and R. J. Rivers, Phys. Rev. Lett. 81, 3707 (1998).

    Google Scholar 

  35. P. C. Hendry, N. S. Lawson, R. A. M. Lee, P. V. E. McClintock, and C. D. H. Williams, Physica B 210, 209 (1995).

    Google Scholar 

  36. M. E. Dodd, P. C. Hendry, N. S. Lawson, R. A. M. Lee, and P. V. E. McClintock, Czech. J. Phys. 46, 43 (1996).

    Google Scholar 

  37. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, J. Low Temp. Phys. 52, 189 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, M.E., Hendry, P.C., Lawson, N.S. et al. Expansion of Liquid 4He Through the Lambda Transition. Journal of Low Temperature Physics 115, 89–105 (1999). https://doi.org/10.1023/A:1021898914014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021898914014

Keywords

Navigation