Skip to main content
Log in

Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Theeffects on nitrogen losses and volatilisation of ammonia, methane and nitrousoxide from manure storage were investigated using excreta of dairy cows fed twoforage-based rations, (i) young grass (ad libitum) and hay (2 kgd−1) or (ii) hay (ad libitum) and concentrate (3kg d−1). In two series either grass of low crudeprotein content (112 g kg−1 dry matter, similar tothe hay) or of high crude protein content (229 gkg−1) was used. Emissions from the resulting manureswere investigated in two common storage systems, the liquid manure system andthe slurry/farmyard manure system. Storage was performed under controlledconditions using the chamber technique to quantify trace gas emissions and themass balance method to measure total nitrogen loss. The ration characterised bythe low-protein grass resulted in higher urinary nitrogen and lower faecalnitrogen excretion than the hay ration, thus significantly enhancing totalnitrogen and ammonia emissions from all types of manure. Differences to the hayration were, however, far more pronounced feeding the high-protein grass, withthe emissions of nitrogen and ammonia accounting for the 3- to 4-fold level ofthat of the hay ration. Initial differences of the manures in nitrogen contenthad partly disappeared after storage yielding manures which differed less innitrogen fertiliser value than the fresh manures. In some but not all manuretypes there was a certain decrease in nitrous oxide emission feeding grassinstead of hay. Methane release was low with the high-protein grass of series2.Total nitrogen losses during 5 to 7 weeks of storage were lowest with farmyardmanure (11% of initial nitrogen), followed by liquid manure (19%)and slurry (30%). Calculated for the daily manure amount per cow,greenhouse gas emissions from 5 to 7 weeks stored manure were higher in theslurry/farmyard manure system than in the liquid manure system (2.4 vs 1.5kg CO2 equivalents).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amberger A., Vilsmeier K. and Gutser R. 1982. Stickstofffraktionen verschiedener Gullen und deren Wirkung im Pflanzenversuch. Z. Pflanzenernähr. Bodenk. 145: 283-294.

    Google Scholar 

  • Amon B., Boxberger J. and Amon T. 1998. Untersuchung der Ammoniakemission in der Landwirtschaft Österreichs zur Ermittlung der Reduktionspotentiale und Reduktionsmöglichkeiten. Endbericht zum Forschungsprojekt Nr L 883/94. Institut für Land-, Umwelt-und Energietechnik der Universität für Bodenkultur, Vienna, Austria.

    Google Scholar 

  • Berry N.R., Sutter F., Bruckmaier R.M., Blum J.W. and Kreuzer M. 2001. Limitations of high Alpine grazing conditions for early-lactation cows: effects of energy and protein supplementation. Anim. Sci. 73: 149-162.

    Google Scholar 

  • Bussink D.W. 1994. Relationships between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fert. Res. 38: 111-121.

    Google Scholar 

  • Bussink D.W. and Oenema O. 1998. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr. Cycl. Agroecosyst. 51: 19-33.

    Google Scholar 

  • Freibauer A. and Kaltschmitt M. 2000. N2O and CH4 inventories in European agriculture-methodological approach, quantification and comparison. In: Institute of Energy Economics and the Rational Use of Energy, Proc. Int. Conf. on Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture. University of Stuttgart 200 p.

  • Hansen K.H., Angelidaki I. and Ahring B.K. 1998. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res. 32: 5-12.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) 1996. Cli mate Change 1995. In: Houghton J.T., Jenkins G.J. and Ephraums J.J. (eds), The Science of Climate Change. Cambridge University Press, UK.

    Google Scholar 

  • James T., Meyer D., Esparza E., Depeters E.J. and Perez-Monti H. 1999. Effects of dietary nitrogen manipulation on ammonia volatilization from manure from Holstein heifers. J. Dairy Sci. 82: 2430-2439.

    Google Scholar 

  • Jarvis S.C., Hatch D.J. and Roberts D.H. 1989. The effects of grassland management on nitrogen losses from grazed swards through ammonia volatilization; the relationship to excretal N returns from cattle. J. Agric. Sci. (Camb). 112: 205-216.

    Google Scholar 

  • Jarvis S.C., Hatch D.J., Orr R.J. and Reynolds S.E. 1991. Micrometeorological studies of ammonia emission from sheep grazed swards. J. Agric. Sci. (Camb). 117: 101-109.

    Google Scholar 

  • Kellems R.O., Miner J.R. and Church D.C. 1979. Effect of ration, waste composition and length of storage on the volatilization of ammonia, hydrogen sulfide and odors from cattle waste. J. Anim. Sci. 48: 436-445.

    Google Scholar 

  • Kirchgessner M., Windisch W., Muller H.L. and Kreuzer M. 1991. Release of methane and of carbon dioxide by dairy cattle. Agribiol. Res. 44: 91-102.

    Google Scholar 

  • Kröber T.F., Kulling D.R., Menzi H., Sutter F. and Kreuzer M. 2000. Quantitative effects of feed protein reduction and methionine on nitrogen use by cows and nitrogen emissions from slurry. J. Dairy Sci. 83: 2941-2951.

    Google Scholar 

  • Külling D.R., Menzi H., Krober T.F., Neftel T.F., Sutter F., Lischer P. et al. 2001. Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. J. Agric. Sci. (Camb). 137: 235-250.

    Google Scholar 

  • Meier H. and Poppe S. 1979. Zum Einfluss nativer Rohfaser auf die wahre Verdaulichkeit des Stickstoffs und der Aminosauren. Arch. Tierernahr. 29: 111-118.

    Google Scholar 

  • Meixner F.X., Fickinger T., Marafu L., Serca D., Nathaus F.J., Makina E. et al. 1997. Preliminary results on nitric oxide emission from a southern African savanna ecosystem. Nutr. Cycl. Agroecosyst. 48: 123-138.

    Google Scholar 

  • Mosier A.R. 1989. Chamber and isotope techniques. In: Andreae M.O. and Schimel D.S. (eds), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. John Wiley & Sons, New York, pp. 175-187.

    Google Scholar 

  • Naumann K. and Bassler R. 1997. Methodenbuch Vol. III. Die chemische Untersuchung von Futtermitteln. VdLUFA-Verlag, Darmstadt, Germany.

    Google Scholar 

  • Oenema O., Gebauer G., Rodriguez M., Sapek A., Jarvis S.C., Corre W.J. et al. 1998. Controlling nitrous oxide emissions from grassland livestock production systems. Nutr. Cycl. Agroecosyst. 52: 141-149.

    Google Scholar 

  • Paul J.W., Dinn N.E., Kannangara T. and Fisher L.J. 1998. Protein content in dairy cattle diets affects ammonia losses and fertiliser nitrogen value. J. Environ. Qual. 27: 528-534.

    Google Scholar 

  • Pollet I., Christiaens J. and Van Langenhove H. 1998. Determination of the ammonia emission from cubicle houses for dairy cows based on a mass balance. J. Agric. Eng. Res. 71: 239–248.

    Google Scholar 

  • RAP (Station fédérale de recherches en production animale) 1999. Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer. 4th edn. Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland.

    Google Scholar 

  • Rihm B. 1996. Critical loads of nitrogen and their exceedances. Environmental Series No 275. Federal Office of Environment Forests and Landscape, Berne, Switzerland.

    Google Scholar 

  • Roffler R.E. and Satter L.D. 1975. Relationship between ruminal ammonia and nonprotein nitrogen utilization by ruminants. II. Application of published evidence to the development of a theoretical model for predicting nonprotein nitrogen utilization. J. Dairy Sci. 58: 1889-1898.

    Google Scholar 

  • Smits M.C.J., Valk H., Elzing A. and Keen A. 1995. Effect of protein nutrition on ammonia emissions from a cubicle house for dairy cattle. Livest. Prod. Sci. 44: 147-156.

    Google Scholar 

  • Stadelmann F., Menzi H., Pfefferli S. and Zimmermann A. 1998. Ammonia Emissions in Switzerland. Present Situation, Development, Technical and Economic Assessment of Abatement Measures, Recommendations. Swiss Federal Research Station for Agroecology and Agriculture, Zurich/Berne, Switzerland, 56 pp.

    Google Scholar 

  • Valk H. 1994. Effects of partial replacement of herbage by maize silage on N-utilization and milk production of dairy cows. Livest. Prod. Sci. 40: 241-250.

    Google Scholar 

  • Walther U., Menzi H., Ryser J.-P., Flisch R., Jeangros B., Kessler W. et al. 1994. Grundlagen für die Dungung im Acker-und Futterbau. Agrarforsch. 1 (Suppl.): 1-40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Külling, D., Menzi, H., Sutter, F. et al. Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations. Nutrient Cycling in Agroecosystems 65, 13–22 (2003). https://doi.org/10.1023/A:1021857122265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021857122265

Navigation