Skip to main content
Log in

Visualisation of Convective Flow Patterns in Liquid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The advantages of using liquid helium as the investigative fluid in Rayleigh-Bénard experiments are reviewed. A low temperature shadowgraphy apparatus is described that permits convective flow pattern visualisation in liquid helium, thus overcoming the main disadvantage until now of using quantum fluids. The factors involved in maximising the optical resolution for both the shadowgraph and schlieren methods are examined for several fluids and this discussion is applied to the low temperature apparatus in assessing its performance. Some preliminary results on pattern formation in liquid helium are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M.C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Google Scholar 

  2. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Convection, Dover, New York (1981).

  3. R. M. Clever and F. H. Busse, J. Fluid Mech. 65, 625 (1974).

    Google Scholar 

  4. F. H. Busse and R. M. Clever, J. Fluid Mech. 91, 319 (1979).

    Google Scholar 

  5. E. W. Bolton, F. H. Busse, and R. M. Clever, J. Fluid Mech. 164, 469 (1986).

    Google Scholar 

  6. R. P. Behringer, Rev. Mod. Phys. 57, 657 (1985).

    Google Scholar 

  7. A. Libchaber and J. Maurer, A Rayleigh-Bénard experiment: Helium in a small box, in Nonlinear Phenomena at Phase Transitions and Instabilities, T. Riste (ed.), Plenum, New York (1982), p. 259.

    Google Scholar 

  8. G. Ahlers, The Rayleigh-Bénard instability at helium temperatures, in Fluctuations, Instabilities and Phase Transitions, T. Riste (ed.), Plenum Press, New York (1975), p. 181.

    Google Scholar 

  9. G. Metcalfe and R. P. Behringer, J. Fluid Mech. 307, 269 (1996).

    Google Scholar 

  10. D. Murphy and H. Meyer, J. Low Temp. Phys. 97, 509 (1994).

    Google Scholar 

  11. C. F. Barenghi, P. G. J. Lucas, and R. J. Donnelly, J. Low Temp. Phys. 44, 491 (1981).

    Google Scholar 

  12. P. A. Warkentin, H. J. Haucke, P. Lucas, and J. C. Wheatley, Proc. Natl. Acad. Sci. 77, 6983 (1980).

    Google Scholar 

  13. H. Haucke, Y. Maeno, P. Warkentin, and J. Wheatley. J. Low Temp. Phys. 44, 505 (1981).

    Google Scholar 

  14. G. Metcalfe and R. P. Behringer, J. Fluid Mech. 307, 297 (1996).

    Google Scholar 

  15. V. Steinberg, Phys. Rev. A 24, 975 (1981).

    Google Scholar 

  16. V. Steinberg, Phys. Rev. A 24, 2584 (1981).

    Google Scholar 

  17. A. L. Fetter, Phys. Rev. B 26, 1164 (1982).

    Google Scholar 

  18. A. L. Fetter, Phys. Rev. B 26, 1174 (1982).

    Google Scholar 

  19. V. Steinberg and H. R. Brand, Phys. Rev. B 28, 1618 (1983).

    Google Scholar 

  20. B. F. Edwards and A. L. Fetter, Phys. Fluids 27, 2795 (1984).

    Google Scholar 

  21. Y. Maeno, H. Haucke, R. E. Ecke, and J. C. Wheatley, J. Low Temp. Phys. 59, 305 (1985).

    Google Scholar 

  22. A. P. Grigin, Sov. Phys. JETP 70, 1045 (1990).

    Google Scholar 

  23. G. Ahlers and I. Rehberg, Phys. Rev. Lett. 56, 1373 (1986).

    Google Scholar 

  24. H. Gao and R. P. Behringer, Phys. Rev. A 34, 697 (1986).

    Google Scholar 

  25. T. Onions, M. R. Ardon, P. G. J. Lucas, M. D. J. Terret, and M. S. Thurlow, Physica B 165 & 166, 521 (1990).

    Google Scholar 

  26. T. Sullivan, R. E. Ecke, and V. Steinberg, Low-Temperature Flow Visualization of Thermally-Convecting Liquid Helium, in Proc. 8th Oregon Conf. on Low Temp. Phys., R. J. Donnelly (ed.), Dept. of Phys. Report 8/91, University of Oregon, Eugene (1991), p. 107.

    Google Scholar 

  27. T. S. Sullivan, V. Steinberg, and R. E. Ecke, J. Low Temp. Phys. 90, 343 (1993).

    Google Scholar 

  28. M. S. Thurlow, B. J. Brooks, P. G. J. Lucas, M. R. Ardron, J. K. Bhattacharjee, and A. L. Woodcraft, J. Fluid Mech. 313, 381 (1996).

    Google Scholar 

  29. W. Merzkirch, Density sensitive flow visualisation, in Methods of Experimental Physics, Vol. 18, Part A: Fluid Dynamics, R. J. Emrich (ed.), Academic Press, London (1981), p. 345.

    Google Scholar 

  30. V. Steinberg, G. Ahlers, and D. S. Cannell, Physica Scripta 32, 534 (1985).

    Google Scholar 

  31. C. W. Meyer, D. S. Cannell, and G. Ahlers, Phys. Rev. A 45, 8583 (1992).

    Google Scholar 

  32. P. Kolodner, Phys. Rev. E 50, 2731 (1994).

    Google Scholar 

  33. V. Croquette, Contemp. Phys. 30, 113 (1989).

    Google Scholar 

  34. V. Croquette, Contemp. Phys. 30, 153 (1989).

    Google Scholar 

  35. Y. Hu, R. Ecke, and G. Ahlers, Phys. Rev. E 48, 4399 (1993).

    Google Scholar 

  36. S. W. Morris, E. Bodenschatz, D. S. Cannell, and G. Ahlers, Phys. Rev. Lett. 71, 2026 (1993).

    Google Scholar 

  37. J. R. Bruyn, E. Bodenschatz, S. W. Morris, S. P. Trainoff, Y. Hu, D. S. Cannell, and G. Ahlers, Rev. Sci. Instrum. 67, 2043 (1996).

    Google Scholar 

  38. M. Assenheimer and V. Steinberg, Phys. Rev. Lett. 70, 3888 (1993).

    Google Scholar 

  39. V. Croquette and A. Pocheau, Wavenumber selection in Rayleigh-Bénard convective structure, in Lecture Notes in Physics, Vol. 210 (Cellular Structures in Instabilities), J. E. Wesfreid and S. Zaleski (eds.), Springer-Verlag, New York (1984), p. 104.

    Google Scholar 

  40. A. L. Woodcraft, P. G. J. Lucas, R. G. Matley, and W. Y. T. Wong, First images of controlled convection in liquid helium, in Proceedings of the International Workshop on Ultra-High Reynolds Number Flows, Brookhaven National Laboratory, 18–20 June 1996 (to be published by Springer-Verlag, New York).

  41. A. L. Woodcraft, P. G. J. Lucas, R. G. Matley, and W. Y. T. Wong, Cz. J. Phys. 46S1, 85 (1996).

    Google Scholar 

  42. P. G. J. Lucas, A. L. Woodcraft, R. G. Matley, and W. Y. T. Wong, Phys. World, p. 23 (August 1996).

  43. V. Croquette, Ph.D. thesis, Université Pierre et Marie Curie, Paris (1986).

  44. V. Croquette, Optical analysis of shadowgraphic images (Unpublished).

  45. M. S. Heutmaker and J. P. Gollub, Phys. Rev. A 35, 242 (1987).

    Google Scholar 

  46. S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, Exp. Fluids 7, 412 (1989).

    Google Scholar 

  47. A. Joets and R. Ribotta, J. Phys. I France 4, 1013 (1994).

    Google Scholar 

  48. A. L. Woodcraft, Ph.D. thesis, University of Manchester (1996).

  49. E. N. Lorenz, J. Atmospheric Sci. 20, 130 (1963).

    Google Scholar 

  50. E. L. Koschmieder, Bénard Cells and Taylor Vortices, Cambridge University Press, Cambridge (1993).

    Google Scholar 

  51. B. Plapp, Private communication.

  52. T. J. Pedley and J. O. Kessler, Sci. Prog. 76, 105 (1992).

    Google Scholar 

  53. C. W. Meyer, G. Ahlers, and D. S. Cannell, Phys. Rev. A 44, 2514 (1991).

    Google Scholar 

  54. P. Kolodner and H. Williams, Complex demodulation techniques for experiments on traveling-wave convection, in Proceedings of the NATO Advanced Research Workshop on Nonlinear Evolution of Spatiotemporal Structures in Dissipative Continuous Systems, NATO Advanced Study Institute Ser. B: Physics, Vol. 255, F. H. Busse and L. Kramer (eds.), Plenum, NY (1990), p. 73.

    Google Scholar 

  55. R. Wagner, P. J. Ras, P. Remeijer, S. C. Steel, and G. Frossati, J. Low Temp. Phys. 95, 715 (1994).

    Google Scholar 

  56. H. Alles, J. P. Ruutu, A. V. Babkin, P. J. Hakonen, A. J. Manninen, and J. P. Pekola, Rev. Sci. Instrum. 65, 1784 (1994).

    Google Scholar 

  57. G. Quentin and I. Rehberg, Phys. Rev. Lett. 74, 1578 (1995).

    Google Scholar 

  58. L. E. Delong, O. G. Symko, and J. C. Wheatley, Rev. Sci. Instrum. 42, 147 (1971).

    Google Scholar 

  59. U.K. Part No. ZA35Q from MPS Electronics, Rayleigh, U.K.

  60. Creative Labs, Inc., Milpitas, U.S.A.

  61. M. Locatelli, D. Arnaud, and M. Routin, Cryogenics 16, 374 (1976).

    Google Scholar 

  62. R. J. Donnelly, R. A. Riegelmann, and C. F. Barenghi, The observed properties of liquid helium at the saturated vapour pressure, Technical report, Department of Physics, University of Oregon, August 1992.

  63. A. Engelhardt, MSc thesis, University of Manchester (1994).

  64. M. Assenheimer and V. Steinberg, Europhys. News 27, 143 (1996).

    Google Scholar 

  65. M. Assenheimer, Ph.D. thesis, Weizmann Institute of Science, Rehovot, Israel (1994).

  66. Shell Oils, Lubricants Division, Technical Department, Manchester, U.K.

  67. F. Din, Argon, in Thermodynamic Functions of Gases, Vol. 2, F. Din (ed.), Butterworth, London (1956), p. 146.

    Google Scholar 

  68. R. Coulon, G. Montixi, and R. Occelli, Can. J. Phys. 59, 15555 (1981).

    Google Scholar 

  69. A. D. Buckingham and C. Graham, Proc. Roy Soc. A 337, 275 (1974).

    Google Scholar 

  70. D. R. Lide (ed.), C. R. C. Handbook of Chemistry and Physics, 72nd edition, C. R. C. Press, Ann Arbor, U.S.A. (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodcraft, A.L., Lucas, P.G.J., Matley, R.G. et al. Visualisation of Convective Flow Patterns in Liquid Helium. Journal of Low Temperature Physics 114, 109–134 (1999). https://doi.org/10.1023/A:1021849819891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021849819891

Keywords

Navigation