Skip to main content
Log in

Microstructure, electrochemical surface and electrocatalytic properties of IrO2+Ta2O5 oxide electrodes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize physical structure of IrO2+Ta2O5 films over the whole composition range by thermodecomposition of chloride solutions heated at 450°C. Solid solubilization between Ta component and IrO2 rutile in the mixed films was measured, and three typical surface morphologies of the oxide coatings were observed. The surface electrochemical properties of Ti/IrO2-Ta2O5 electrodes were studied by cyclic voltammetry at varying potential scan rate, and a ‘double-layer’ electrochemical structure containing the ‘inner’ and ‘outer’ layers has been distinguished. The voltammetric charge appears to decline with the decrease of grain size of oxide coatings as a result of the effect of surface tension. However, the coatings of 70% IrO2+30% Ta2O5 with the finest grains still exhibit the highest apparent activity for oxygen evolution evaluated by the anodic current at a constant potential. This result is interpreted by the measurements of open-circuit potential (E oc) and double-layer capacitance (C dl) using electrochemical impedance spectroscopy (EIS). Thereby, the reliability of voltammetric charge obtained in ‘double-layer’ potential region in determining the real electrocatalytic activity for O2 evolution has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Beer, US patent US549194 (1966); Idem., US710551 (1968).

  2. S. Trasatti, Electrochim. Acta 45 (2000) 2377.

    Google Scholar 

  3. S. Nijjer, J. Thonstad and G. M. Haarberg, ibid. 46 (2001) 3503.

    Google Scholar 

  4. G. Lodi, A. de Battisti, G. Bordin, C. de Asmundis and A. Benedetti, J. Electroanal. Chem. 277 (1990) 139.

    Google Scholar 

  5. C. Comninellis and G. P. Vercesi, J. Appl. Electrochem. 21 (1991) 335.

    Google Scholar 

  6. J. Rolewicz, C. Comninellis, E. Plattiner and J. Hinden, Electrochim. Acta 33 (1988) 573.

    Google Scholar 

  7. Idem., Chimia 42 (1988) 75.

    Google Scholar 

  8. Y. E. Roginskaya, O. V. Morozova, E. N. Loubnln, A. V. Popov, Y. I. Ulitina, V. V. Zhurov, N. A. Ivanov and S. Trassati, J. Chem. Soc. Faraday Trans. 89 (1993) 1707.

    Google Scholar 

  9. Y. E. Roginskaya and O. V. Mororozova, Electrochim. Acta 40 (1995) 817.

    Google Scholar 

  10. J. M. Hu, H. M. Meng, J. Q. Zhang, J. X. Wu, D. J. Yang and C. N. Cao, J. Mater. Sci. Lett. 20 (2001) 1353.

    Google Scholar 

  11. F. Cardarelli, P. Taxil, A. Savall, Ch. Comninellis, G. Manoli and O. Leclerc, J. Appl. Electrochem. 28 (1998) 245.

    Google Scholar 

  12. G. P. Vercesi, J. Rolewicz, C. Comninellis and J. Hinden, Thermochim. Acta 176 (1991) 31.

    Google Scholar 

  13. R. Otogawa, M. Morimitsu and M. Matsunaga, Electrochim. Acta 44 (1998) 1509.

    Google Scholar 

  14. S. Trasatti, “Electrodes of Conductive Metallic Oxides,” Part A (Elsevier, Amsterdam, 1980).

    Google Scholar 

  15. R. Boggio, A. Carugati and S. Trasatti, J. Appl. Electrochem. 17 (1987) 828.

    Google Scholar 

  16. L. A. da Silva, V. A. Alves, S. C. de Castro and J. F. C. Boodts, Colloids and Surfaces A: Physicochem. Eng. Aspects 170 (2000) 119.

    Google Scholar 

  17. C. Angelinetta and S. Trasatti, Mater. Chem. Phys. 22 (1989) 231.

    Google Scholar 

  18. S. Pizzini and G. Buzzanca, Mater. Res. Bull. 7 (1972) 449.

    Google Scholar 

  19. H. P. Klug and L. E. Alexand, “X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials” (Wiley, New York, 1974).

    Google Scholar 

  20. Natl. Bur. Std. (U.S.) Mono. 25, Sec. 4 (1965).

  21. L. L. Xu, “The Semiconductor Fundamental of Oxides and Compounds” (Xi'an Electronic Science & Technology University Press, Xi'an, 1991) (in Chinese).

    Google Scholar 

  22. L. A. de Farla, J. F. C. Boodts and S. Tasatti, Electrochim. Acta 37 (1992) 2511.

    Google Scholar 

  23. S. Ardizzone, A. Carugati and S. Trasatti, J. Electroanal. Chem. 126 (1981) 287.

    Google Scholar 

  24. S. Tasatti, Electrochim. Acta 36 (1991) 225.

    Google Scholar 

  25. D. Galizzioli, F. Tantardini and S. Trasatti, J. Appl. Electrochem. 4 (1974) 52.

    Google Scholar 

  26. A. de Oliveira-Sousa, M. A. S. da Silva, S. A. S. Machado, L. A. Avaca and P. de Limaneto, Electrochim. Acta 45 (2000) 4467.

    Google Scholar 

  27. L. D. Burke and O. J. Murphy, J. Electroanal. Chem. 96 (1979) 19.

    Google Scholar 

  28. S. Ardizzone, G. Fregonara and S. Trasatti, Electrochim. Acta 35 (1990) 263.

    Google Scholar 

  29. C. P. de Pauli and S. Trasatti, J. Electroanal. Chem. 396 (1995) 161.

    Google Scholar 

  30. D. Baronetto, N. Krstajic and S. Tasatti, Electrochim. Acta 39 (1994) 2359.

    Google Scholar 

  31. W. S. Brey and B. H. Davis, J. Colloid and Interface Science 70 (1979) 10.

    Google Scholar 

  32. L. A. da Silva, V. A. Alves, M. A. P. da Silva, S. Trasatti and J. F. C. Boodts, Electrochim, Acta 42 (1997) 271.

    Google Scholar 

  33. V. A. Alves, L. A. da Silva and J. F. C. Boodts, J. Appl. Electrochem. 28 (1998) 889.

    Google Scholar 

  34. P. Rasiyah and A. C. C. Tseung, J. Electrochem. Soc. 131 (1984) 803.

    Google Scholar 

  35. A. Hickling and S. Hill, Discussions Faraday Society 1 (1947) 236.

    Google Scholar 

  36. A. C. C. Tseung and S. Jasem, Electrochim. Acta 22 (1977) 31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Jm., Zhang, Jq., Meng, Hm. et al. Microstructure, electrochemical surface and electrocatalytic properties of IrO2+Ta2O5 oxide electrodes. Journal of Materials Science 38, 705–712 (2003). https://doi.org/10.1023/A:1021840426997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021840426997

Keywords

Navigation