Abstract
We describe a simulation of the scattering in beams of helium atoms. The number of atoms N in the beams is reduced by a large scaling factor λ while the collision cross-section is increased by λ. This leaves the rate of scattering for each particle unchanged. As an example, we predict the outcome of a low temperature atomic beam experiment to measure the 4 He- 4 He atomic scattering cross-section σ at low energies. Because of the existence of a very weakly bound dimer, the low energy cross-section is expected to be unusually large, ∼1.83 × 10 5 Å 2 . In the simulation N/λ is small enough for the trajectories of all the scaled atoms to be calculated numerically. The simulation shows that the experiment is quite practicable. The proposed apparatus is just over 20 cm long, and a few centimeters wide, small enough to fit in a dilution refrigerator. The heaters and bolometers are assumed to be similar to those used in previous low temperature scattering experiments. We show that, using low intensity beams, the cross-section can be measured as a function of the relative velocity v r between ∼2 and ∼8 m/sec, corresponding to relative energies between ∼1 and ∼16 mK. By fitting σ(v r) one can determine the scattering length and effective range of the interaction. We predict that, at high intensity where multiple scattering is very important, the two beams coalesce into one.
Similar content being viewed by others
REFERENCES
J. Wang, V. A. Shamamian, B. R. Thomas, J. M. Wilkinson, J. R. Riley, C. F. Giese, and W. R. Gentry, Phys. Rev. Lett. 60, 696 (1988).
J. C. Mester, E. S. Meyer, M. W. Reynolds, T. E. Huber, Z. Zhao, B. Freedman, J. Kim, and I. F. Silvera, Phys. Rev. Lett. 71, 1343 (1993).
J. C. Mester, E. S. Meyer, T. E. Huber, M. W. Reynolds, and I. F. Silvera, J. Low Temp. Phys. 89, 569 (1992).
F. Luo, G. C. McBane, G. Kim, and C. F. Giese, J. Chem. Phys. 98, 3564 (1993).
F. Luo, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 104, 1151 (1996).
W. Schöllkopf and J. P. Toennies, J. Chem. Phys. 104, 1155 (1996).
J. P. Toennies and K. Winkelmann, J. Chem. Phys. 66, 3965 (1977).
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press (1994).
E. Meiburg, Phys. Fluids 29, 3107 (1986).
R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61, 1487 (1987).
R. A. Aziz and M. J. Slaman, Metrologia 27, 211 (1990).
T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 106, 5109 (1997).
A. R. Janzen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).
R. de Bruyn Ouboter and C. N. Yang, Physica B 144, 127 (1987).
E. S. Meyer, J. C. Mester, and I. F. Silvera, J. Chem.Phys 100, 4021 (1994); F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 100, 4023 (1994).
Y. H. Uang and W. C. Stwalley, J. Phys. (Paris), 41, C7–33 (1980).
See, e.g., E. Merzbacher, Quantum Mechanics, Chap. 11, John Wiley (1970).
E. S. Meyer, Collision Phenomena in Helium and Atomic Hydrogen: Quantum Gases at Low Temperature, Ph.D. thesis, Harvard University (1993).
H. A. Bethe, Phys. Rev. 76, 38 (1949).
J. Lekner, Mol. Phys. 23, 619 (1972).
M. J. Jamieson, A. Dalgarno, and M. Kimura, Phys. Rev. A 51, 2626 (1995).
D. T. Meyer, H. Meyer, W. Hallidy, and C. F. Kellers, Cryogenics 3, 150 (1963).
D. O. Edwards, P. Fatouros, G. G. Ihas, P. Mrozinski, S. Y. Shen, F. M. Gasparini, and C. P. Tam, Phys. Rev. Lett. 34, 1153 (1975); D. O. Edwards and P. P. Fatouros, Phys. Rev. B 17, 2147 (1978).
V. U. Nayak, D. O. Edwards, and N. Masuhara, Phys. Rev. Lett. 50, 990 (1983).
K. Andres, R. C. Dynes, and V. Narayanamurti, Phys. Rev. A 8, 2501 (1973).
J. Eckardt, D. O. Edwards, F. M. Gasparini, and S. Y. Shen, in Proc. 13th Int. Conf. on Low Temperature Physics LT-13, Vol. 518, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (eds.), Plenum, New York (1974).
The flow chart is similar to that in the classic work of B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).
H. Kuze, Y. Oshima, and Y. Tanaka, Chem. Phys. Lett. 195, 400 (1992).
D. O. Edwards, G. G. Ihas, and C. P. Tam, Phys. Rev. B 16, 3122 (1977).
V. U. Nayak, The Scattering of 4 He Atoms off the Surface of Liquid 4 He at Grazing Angles of Incidence, Ph.D. thesis, The Ohio State University (1982).
See, e.g., M. Nahum and J. M. Martinis, Appl. Phys. Lett. 63, 3075 (1993).
F. J. Low and A. R. Hoffman, Appl. Optics 2, 649 (1963).
P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, Chap. 4, McGraw-Hill Book Company (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hjort, H.H., Viznyuk, S.A. & Edwards, D.O. A Scaling Calculation of the Scattering of 4He Atomic Beams. Journal of Low Temperature Physics 116, 99–132 (1999). https://doi.org/10.1023/A:1021831027102
Issue Date:
DOI: https://doi.org/10.1023/A:1021831027102