Skip to main content
Log in

Kinetic Mechanism of Mitochondrial NADH:Ubiquinone Oxidoreductase Interaction with Nucleotide Substrates of the Transhydrogenase Reaction

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The effects of Tinopals (cationic benzoxazoles) AMS-GX and 5BM-GX on NADH-oxidase, NADH:ferricyanide reductase, and NADH → APAD+ transhydrogenase reactions and energy-linked NAD+ reduction by succinate, catalyzed by NADH:ubiquinone oxidoreductase (Complex I) in submitochondrial particles (SMP), were investigated. AMS-GX competes with NADH in NADH-oxidase and NADH:ferricyanide reductase reactions (K i = 1 μM). 5BM-GX inhibits those reactions with mixed type with respect to NADH (K i = 5 μM) mechanism. Neither compound affects reverse electron transfer from succinate to NAD+. The type of the Tinopals' effect on the NADH → APAD+ transhydrogenase reaction, occurring with formation of a ternary complex, suggests the ordered binding of nucleotides by the enzyme during the reaction: AMS-GX and 5BM-GX inhibit this reaction uncompetitively just with respect to one of the substrates (APAD+ and NADH, correspondingly). The competition between 5BM-GX and APAD+ confirms that NADH is the first substrate bound by the enzyme. Direct and reverse electron transfer reactions demonstrate different specificity for NADH and NAD+ analogs: the nicotinamide part of the molecule is significant for reduced nucleotide binding. The data confirm the model suggesting that during NADH → APAD+ reaction, occurring with ternary complex formation, reduced nucleotide interacts with the center participating in NADH oxidation, whereas oxidized nucleotide reacts with the center binding NAD+ in the reverse electron transfer reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brandt, U. (ed.) (1998) Biochim. Biophys. Acta, 1364 (special issue).

  2. Fearnley, I. M., and Walker, J. F. (1992) Biochim. Biophys.Acta, 1140, 105-135.

    PubMed  Google Scholar 

  3. Walker, J. E. (1992) Q. Rev. Biophys., 25, 253-324.

    PubMed  Google Scholar 

  4. Rao, N. A., Felton, S. P., Huennekens, F. M., and Mackler, B. (1963) J. Biol. Chem., 238, 449-455.

    PubMed  Google Scholar 

  5. Ohnishi, T. (1998) Biochim. Biophys. Acta, 1364, 186-206.

    PubMed  Google Scholar 

  6. Vinogradov, A. D., Sled, V. D., Burbaev, D. Sh., Grivennikova, V. G., Moroz, I. A., and Ohnishi, T. (1995) FEBS Lett., 370, 83-87.

    Article  PubMed  Google Scholar 

  7. Kang, D., Narabayashi, H., Sata, T., and Takeshige, K. (1983) J. Biochem., 94, 1301-1306.

    PubMed  Google Scholar 

  8. Krishnamoorthy, G., and Hinkle, P. C. (1988) J. Biol. Chem., 263, 17566-17575.

    PubMed  Google Scholar 

  9. Takeshige, K., and Minakami, S. (1979) Biochem. J., 180, 129-135.

    PubMed  Google Scholar 

  10. Turrens, J. F., and Boveris, A. (1980) Biochem. J., 191, 421-427.

    PubMed  Google Scholar 

  11. Dooijewaard, G., and Slater, E. C. (1976) Biochim. Biophys. Acta, 440, 1-15.

    PubMed  Google Scholar 

  12. Dooijewaard, G., and Slater, E. C. (1976) Biochim. Biophys. Acta, 440, 16-35.

    PubMed  Google Scholar 

  13. Gavricova, E. V., Grivennicova, V. G., Sled, V. D., Ohnishi, T., and Vinogradov, A. D. (1995) Biochim. Biophys. Acta, 1230, 23-30.

    PubMed  Google Scholar 

  14. Sled, V. D., and Vinogradov, A. D. (1992) Biochim. Biophys. Acta, 1141, 262-268.

    Google Scholar 

  15. Ragan, C. I. (1976) Biochim. Biophys. Acta, 456, 249-290.

    PubMed  Google Scholar 

  16. Degli Esposti, M. D., Ngo, A., McMullen, G. L., Chelli, A., Sparla, F., Benelli, B., Patta, M., and Linnane, A. W. (1996) Biochem. J., 313, 327-334.

    PubMed  Google Scholar 

  17. Lenaz, G. (1998) Biochim. Biophys. Acta, 1364, 207-221.

    PubMed  Google Scholar 

  18. Hatefi, Y., and Hanstein, W. G. (1973) Biochemistry, 12, 3515-3522.

    PubMed  Google Scholar 

  19. Hatefi, Y., and Galante, Y. M. (1977) Proc. Natl. Acad. Sci. USA, 74, 846-850.

    PubMed  Google Scholar 

  20. Minakami, S., Cremona, T., Ringler, R. L., and Singer, T. P. (1963) J. Biol. Chem., 238, 1528-1537.

    Google Scholar 

  21. Chance, B., and Hollunger, G. (1961) J. Biol. Chem., 236, 1555-1561.

    PubMed  Google Scholar 

  22. Hommes, F. A. (1963) Biochim. Biophys. Acta, 77, 173-182.

    PubMed  Google Scholar 

  23. Vallin, I., and Low, H. (1964) Biochim. Biophys. Acta, 92, 446-457.

    PubMed  Google Scholar 

  24. Kotlyar, A. B., and Vinogradov, A. D. (1990) Biochim. Biophys. Acta, 1019, 151-158.

    PubMed  Google Scholar 

  25. Galante, Y., and Hatefi, Y. (1978) Meth. Enzymol., 53, 15-21.

    PubMed  Google Scholar 

  26. Chen, S., and Guillory, R. J. (1981) J. Biol. Chem., 256, 8318-8323.

    PubMed  Google Scholar 

  27. Yamaguchi, M., Belogrudov, G. I., Matsuno-Yagi, A., and Hatefi, Y. (2000) Eur. J. Biochem., 267, 329-336.

    PubMed  Google Scholar 

  28. Zharova, T. V., and Vinogradov, A. D. (1997) Biochim. Biophys. Acta, 1320, 256-264.

    PubMed  Google Scholar 

  29. Frenkin, M. V., and Kotlyar, A. B. (1999) Biochim. Biophys. Acta, 1413, 139-146.

    PubMed  Google Scholar 

  30. Avraam, R., and Kotlyar, A. B. (1991) Biokhimiya, 56, 2253-2260 (Russ.).

    Google Scholar 

  31. Vinogradov, A. D. (1993) J. Bioenerg. Biomembr., 25, 367-375.

    PubMed  Google Scholar 

  32. Zakharova, N. V., Zharova, T. V., and Vinogradov, A. D. (1999) FEBS Lett., 444, 211-216.

    PubMed  Google Scholar 

  33. Zakharova, N. V. (2002) Biochemistry (Moscow), 67, 651-661.

    Google Scholar 

  34. Anderson, W. M., and Delinck-Gordon, D. L. (1988) in Integration of Mitochondrial Function (Lemasters, J. J., Hackenbrock, Ch. R., and Westerhoff, H. V., eds.) Plenum Publishing Corporation, pp. 63-70.

  35. Anderson, W. M., and Delinck, D. L. (1989) Biophys. J., 55, 568a.

    Google Scholar 

  36. Chambers, B. B., Wood, J. M., Delinck, D. L., and Anderson, W. M. (1991) FASEB J., 5, A1193.

    Google Scholar 

  37. Hatefi, Y. (1978) Meth. Enzymol., 53, 3-14.

    PubMed  Google Scholar 

  38. Stein, A. M., Kaplan, N. O., and Ciotti, M. M. (1959) J. Biol. Chem., 234, 979-986.

    PubMed  Google Scholar 

  39. Siegel, J. M., and Montgomery, G. A. (1959) Arch. Biochem. Biophys., 82, 288-299.

    PubMed  Google Scholar 

  40. Hatefi, Y., and Stempel, K. E. (1969) J. Biol. Chem., 244, 2350-2357.

    PubMed  Google Scholar 

  41. Belogrudov, G., and Hatefi, Y. (1994) Biochemistry, 33, 4571-4576.

    PubMed  Google Scholar 

  42. Vinogradov, A. D., Gavrikova, E. V., Grivennikova, V. G., Zharova, T. V., and Zakharova, N. V. (1999) Biochemistry (Moscow), 64, 136-152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zakharova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharova, N.V., Zharova, T.V. Kinetic Mechanism of Mitochondrial NADH:Ubiquinone Oxidoreductase Interaction with Nucleotide Substrates of the Transhydrogenase Reaction. Biochemistry (Moscow) 67, 1395–1404 (2002). https://doi.org/10.1023/A:1021818312040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021818312040

Navigation