Skip to main content
Log in

Thermal Conductivity of the Accidental Degeneracy and Enlarged Symmetry Group Models for Superconducting UPt3

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present theoretical calculations of the thermal conductivity for the “accidental degeneracy” and “enlarged symmetry group” models that have been proposed to explain the phase diagram of UPt 3 . The order parameters for these models possess point nodes or cross nodes, reflecting the broken symmetries of the ground state. These broken symmetries lead to robust predictions for the ratio of the low-temperature thermal conductivity for heat flow along the ĉ axis and in the basal plane. The anisotropy of the heat current response at low temperatures is determined by the phase space for scattering by impurities. The measured anisotropy ratio, κ c/κ b, provides a strong constraint on theoretical models for the ground state order parameter. The accidental degeneracy and enlarged symmetry group models based on no spin-orbit coupling do not account for the thermal conductivity of UPt 3. The models for the order parameter that fit the experimental data for the ĉ and \({\hat c}\) directions of the heat current are the 2D E1g and E 2u models, for which the order parameters possess line nodes in the ab-plane and point nodes along the ĉ axis, and the A1gE 1g model of Zhitomirsky and Ueda. This model spontaneously breaks rotational symmetry in the ab-plane below Tc2 and predicts a large anisotropy for the ab-plane heat current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Müller, Ch. Roth, D. Maurer, E. W. Scheidt, and K. Lüders, Phys. Rev. Lett. 58, 1224 (1987).

    Google Scholar 

  2. Y. Qian, M. Xu, A. Schenstrom, H.-P. Baum, J. B. Ketterson, D. Hinks, M. Levy, and B. K. Sarma, Solid State Commun. 63, 599 (1987).

    Google Scholar 

  3. G. Bruls, D. Weber, B. Wolf, P. Thalameier, B. Lüthi, A. de Visser, and A. Menovsky, Phys. Rev. Lett. 65, 2294 (1990).

    Google Scholar 

  4. S. Adenwalla, S. W. Lin, Z. Zhao, Q. Z. Ran, J. B. Ketterson, J. A. Sauls, L. Taillefer, D. G. Hinks, M. Levy, and B. K. Sarma, Phys. Rev. Lett. 65, 2298 (1990).

    Google Scholar 

  5. S. Hayden, L. Taillefer, C. Vettier, and J. Flouquet, Phys. Rev. B 46, 8675 (1992).

    Google Scholar 

  6. P. A. Midgley, S. M. Hayden, L. Taillefer, B. Bogenberger, and H. von Löhneysen, Phys. Rev. Lett. 70, 678 (1993).

    Google Scholar 

  7. V. Mineev, Sov. Phys. JETP Lett. 57, 683 (1993).

    Google Scholar 

  8. B. Ellman, A. Zaluska, and L. Taillefer, Physica B 205, 346 (1995); B. Ellman, LANL E-print http://xxx.lanl.gov/abs/cond-mat/9704125.

  9. I. Luk'yanchuk, J. Phys. 11, 1155 (1991).

    Google Scholar 

  10. D. Chen and A. Garg, Phys. Rev. Lett. 70, 1689 (1993).

    Google Scholar 

  11. K. Machida and M. Ozaki, Phys. Rev. Lett. 66, 3293 (1991).

    Google Scholar 

  12. J. Sauls, Adv. Phys. 43, 113 (1994).

    Google Scholar 

  13. K. Park and R. Joynt, Phys. Rev. B 53, 12346 (1996).

    Google Scholar 

  14. B. Shivaram, T. Rosenbaum, and D. Hinks, Phys. Rev. Lett. 57, 1259 (1986).

    Google Scholar 

  15. N. Keller, J. L. Tholence, A. Huxley, and J. Flouquet, Phys. Rev. Lett. 73, 2364 (1994).

    Google Scholar 

  16. C. Choi and J. Sauls, Phys. Rev. Lett. 66, 484 (1991).

    Google Scholar 

  17. H. Tou, Y. Kitaoka, K. Ishida, K. Asayama, and N. Kimura, Phys. Rev. Lett. 80, 3129 (1998).

    Google Scholar 

  18. T. Ohmi and K. Machida, Phys. Rev. Lett. 71, 625 (1993).

    Google Scholar 

  19. K. Machida, T. Ohmi, and M. Ozaki, J. Phys. Soc. Jpn. 62, 3216 (1993).

    Google Scholar 

  20. K. Machida and T. Ohmi, J. Phys. soc. Jpn. 65, 3456 (1996).

    Google Scholar 

  21. M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP Lett. 58, 131 (1993).

    Google Scholar 

  22. M. Zhitomirskii and K. Ueda, Phys. Rev. B 53, 6591 (1996).

    Google Scholar 

  23. R. Heffner and M. Norman, Comm. Cond. Matt. Phys. 17, 361, (1996).

    Google Scholar 

  24. J. A. Sauls and D. Rainer, Czech. J. Phys. 47, 1065 (1996).

    Google Scholar 

  25. P. J. Hirschfeld, D. Vollhardt, and P. Wölfle, Sol. State Comm. 59, 111 (1986).

    Google Scholar 

  26. C. Choi and P. Muzikar, Phys. Rev. B 36, 54 (1987).

    Google Scholar 

  27. M. J. Graf, S.-K. Yip, J. A. Sauls, and D. Rainer, Phys. Rev. B 53, 15147 (1996).

    Google Scholar 

  28. M. J. Graf, S.-K. Yip, and J. A. Sauls, J. Low Temp. Phys. 102, 367 (1996); 106, 727 (1997).

    Google Scholar 

  29. B. Lussier, B. Ellman, and L. Taillefer, Phys. Rev. B 53, 5145 (1996).

    Google Scholar 

  30. H. Suderow, J. P. Brison, A. Huxley, and J. Flouquet, J. Low Temp. Phys. 108, 11 (1997).

    Google Scholar 

  31. M. Norman and P. Hirschfeld, Phys. Rev. B 53 5706 (1996).

    Google Scholar 

  32. L. J. Buchholtz and G. Zwicknagl, Phys. Rev. B 23, 5788 (1981).

    Google Scholar 

  33. G. Preosti, H. Kim, and P. Muzikar, Phys. Rev. B 50, 1259 (1994).

    Google Scholar 

  34. A. Balatsky, M. L. Salkola, and A. Rosengreen, Phys. Rev. B 51, 15547 (1995).

    Google Scholar 

  35. L. Gor'kov and P. A. Kalugin, Sov. Phys. JETP Lett. 41, 254 (1985).

    Google Scholar 

  36. C. Choi and P. Muzikar, Phys. Rev. B 37, 5947 (1988).

    Google Scholar 

  37. P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993).

    Google Scholar 

  38. M. J. Graf, M. Palumbo, D. Rainer, and J. A. Sauls, Phys. Rev. B 52, 10588 (1995).

    Google Scholar 

  39. Y. Sun and K. Maki, Euro. Phys. Lett. 32, 355 (1995).

    Google Scholar 

  40. B. Shivaram, Y. Jeong, T. Rosenbaum, and D. Hinks, Phys. Rev. Lett. 56, 1078 (1986).

    Google Scholar 

  41. C. Broholm, G. Aeppli, R. Kleiman, D. R. Harshman, D. J. Bishop, E. Bucher, D. Williams, E. Ansaldo, and R. Heffner, Phys. Rev. Lett. 65, 1078 (1990).

    Google Scholar 

  42. K. Miyake, S. Schmitt-Rink, and C. Varma, Phys. Rev. B 34, 6554 (1986).

    Google Scholar 

  43. S. Schmitt-Rink, K. Miyake, and C. Varma, Phys. Rev. Lett. 57, 2575 (1986).

    Google Scholar 

  44. H. Monien, K. Scharnberg, L. Tewordt, and N. Schopohl, J. Low Temp. Phys. 65, 13 (1986).

    Google Scholar 

  45. C. J. Pethick and D. Pines, Phys. Rev. Lett. 57, 118 (1986).

    Google Scholar 

  46. S. Yip and A. Garg, Phys. Rev. B 48, 3304 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, M.J., Yip, SK. & Sauls, J.A. Thermal Conductivity of the Accidental Degeneracy and Enlarged Symmetry Group Models for Superconducting UPt3 . Journal of Low Temperature Physics 114, 257–273 (1999). https://doi.org/10.1023/A:1021814206687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021814206687

Keywords

Navigation