Skip to main content
Log in

NQR on Gallium Single Crystals for Absolute Thermometry at Very Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

It is shown that NMR/NQR-thermometry on Ga single crystals can serve the need of absolute thermometry in a temperature range from below 20 μK to above 1 mK. Thus, the sensitive range includes all phase transition temperatures around 1 mK of solid and fluid 3 He, a necessity for an extension of the 3 He-melting-pressure temperature scale towards lower temperatures. The experiments were performed in magnetic fields of 50 to 200 mT and at temperatures down to 200 μK using single rf-pulses. Special care was taken for the orientation of the magnetic field with respect to crystal orientation which was obtained by in-situ pulsed NMR-experiments. It has been shown that in the investigated parameter range nonlinear effects in NMR due to high spin alignment had no significant influence. In pulsed NMR as well as in specific heat experiments it could be shown that spin-spin interactions are only weak in Ga and do not influence nuclear paramagnetism, at least at temperatures above 100 μK. The advantages of using Ga instead other elements for population difference thermometry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. S. Greywall, Phys. Rev. B 33, 7520 (1985); see also, D. S. Greywall and P. A. Busch, J. Low Temp. Phys. 46, 451 (1982).

    Google Scholar 

  2. J. S. Xia, W. Ni, E. D. Adams, P. S. Haskins, and J. E. McKisson, J. Low Temp. Phys. 99, 167 (1995).

    Google Scholar 

  3. H. Marshak, in Low Temperature Nuclear Orientation, N. J. Stone and H. Postma (eds.), North Holland, Amsterdam (1986).

    Google Scholar 

  4. K. Ono, S. Kobayashi, M. Shinohara, K. Asahi, H. Isimoto, N. Nishida, M. Imaizumi, A. Nakaizumi, J. Ray, Y. Iseki, S. Takyanagi, K. Terui, and T. Sugawara, J. Low Temp. Phys. 38, 737 (1980).

    Google Scholar 

  5. H. Alloul, P. Bernier, H. Launvis, and J. P. Pouget, J. Phys. Soc. Japan 30, 101 (1971).

    Google Scholar 

  6. P. M. Andersen, N. S. Sullivan, M. Rall, and J. P. Brison, Physica B 169, 453 (1991).

    Google Scholar 

  7. P. M. Andersen, N. S. Sullivan, B. J. Andraka, J. S. Xia, and E. D. Adams, J. Low Temp. Phys. 89, 715 (1992).

    Google Scholar 

  8. E. B. Genio, G. G. Ihas, and N. S. Sullivan, J. Low Temp. Phys. 110, 763 (1997).

    Google Scholar 

  9. L. Pollack, E. N. Smith, J. M. Parpia, and R. C. Richardson, J. Low Temp. Phys. 87, 753 (1992).

    Google Scholar 

  10. L. Pollack, E. N. Smith, and R. C. Richardson, J. Low Temp. Phys. 106, 93 (1997).

    Google Scholar 

  11. M. Huebner, Th. Wagner, S. Götz, and G. Eska, Physica B 210, 484 (1995).

    Google Scholar 

  12. A. Abragam, Principles of Nuclear Magnetism, Oxford University Press, Oxford (1961).

    Google Scholar 

  13. C. P. Slichter, Principles of Magnetic Resonance, Springer-Verlag, Berlin (1990).

    Google Scholar 

  14. M. I. Valic and D. L. Williams, J. Phys. Chem. Solids 30, 2337 (1969).

    Google Scholar 

  15. G. C. Carter, C. H. Bennett, and D. J. Kahan, Metallic Shifts in NMR, Part 1, Pergamon Press, Oxford (1977).

    Google Scholar 

  16. R. H. Hammon and W. D. Knight, Phys. Rev. 120, 762 (1960).

    Google Scholar 

  17. R. H. Hammond, E. G. Wikner, and G. M. Kelly, Phys. Rev. 143, 275 (1966).

    Google Scholar 

  18. W. H. Press, B. P. Flannery, S. A Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  19. T. P. Das and E. L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York (1958).

    Google Scholar 

  20. Michael Huebner, Ph.D. thesis Universität Bayreuth (1997).

  21. Thomas Wagner, Ph.D. thesis, Universität Bayreuth (1995).

  22. Siegfried Götz, Ph.D. thesis, Universität Bayreuth (1995).

  23. The assymmetry parameter η = +0.179 yields the better agreement with our data. From the quality of the fit we can exclude η = 0.03 and a negative sign of η proposed in the paper of Valic and Williams.14

  24. G. Eska, J. Peters, E. N. Smith, and E. Syskakis, Phys. Lett. A 136, 509 (1989).

    Google Scholar 

  25. W. Bäuml, G. Eska, and W. Pesch, Physica B 194 321 (1994).

    Google Scholar 

  26. J. Leib, M. Huebner, S. Götz, Th. Wagner, and G. Eska, J. Low Temp. Phys. 101, 253 (1995).

    Google Scholar 

  27. G. Eska, Quantum Fluids and Solids, G. G. Ihas and Y. Takano (eds.), American Institute of Physics, New York, AIP Conference Proceedings 194, 316 (1989).

    Google Scholar 

  28. J. Leib, Ph.D. thesis, Universität Bayreuth (1997); J. Leib, M. Huebner, Th. Wagner, and G. Eska, to be published.

  29. M. Huebner, J. Leib, S. Götz, and G. Eska, Czech. J. Phys. 46, 2197 (1996).

    Google Scholar 

  30. By a rf-combiner two rf-pulses can be added for the two required transitions and hence, the pulses can be applied and measured simultaneously (requirements are two independent frequency generators). We have proven that this technique works. For bulk metallic samples the obtainable Q-values are only around Q ~ 5. Thus, pulsed-NMR yields more then 100 times bigger signals than cw-NMR. Additional tuning of the sample coil to the two different resonance frequencies would certainly improve signal/noise, but requires two independent transmitter electronics and some skill in combining the two signal frequencies into one receiver system.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huebner, M., Leib, J. & Eska, G. NQR on Gallium Single Crystals for Absolute Thermometry at Very Low Temperatures. Journal of Low Temperature Physics 114, 203–230 (1999). https://doi.org/10.1023/A:1021810105778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021810105778

Keywords

Navigation