Skip to main content
Log in

Regulation of Vesicular Acetylcholine Transporter by the Activation of Excitatory Amino Acid Receptors in the Avian Retina

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Previous studies have shown that phorbol esters induce protein kinase C (PKC) mediated phosphorylation of the vesicular acetylcholine transporter (VAChT) and change its interaction with vesamicol. However, it is not clear whether physiological activation of receptors coupled to PKC activation can alter VAChT behavior.

2. Here we tested whether activation of kaianate (KA) receptors alters VAChT. Several studies suggest that the cholinergic amacrine cells display KA/AMPA receptors that mediate excitatory input to these neurons. In addition, KA in the chicken retina can generate intracellular messengers with the potential to regulate cellular functions.

3. In cultured chicken retina (E8C11) KA reduced vesamicol binding to VAChT by 53%. This effect was potentiated by okadaic acid, a protein phosphatase inhibitor, and was totally prevented by BIM, a PKC inhibitor.

4. Phorbol myristate acetate (PMA), but not α-PMA, reduced in more than 85% the number of L-[3H]-vesamicol-specific binding sites in chicken retina, confirming that activation of PKC can influence vesamicol binding to chicken VAChT.

5. The data show that activation of glutamatergic receptors reduces [3H]-vesamicol binding sites (VAChT) likely by activating PKC and increasing the phosphorylation of the ACh carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arenson, M. S., and Evans, S.C. (2001). Activation of protein kinaseCincreases acetylcholine release from frog motor nerves by a direct action on L-type Ca(2C) channels and apparently not by depolarisation of the terminal. Neuroscience 104:1157–1164.

    Google Scholar 

  • Arenson, M. S., and Gill, D. S. (1996). Differential effects of an L-type Ca2C channel antagonist on activityand phosphorylation-enhanced release of acetylcholine at the neuromuscular junction of the frog in vitro. Eur. J. Neurosci. 8:437–445.

    Google Scholar 

  • Barbosa, J., Jr., Clarizia, A.D., Gomez, M. V., Romano-Silva, M. A., Prado, V. F., and Prado, M.A. (1997). Effect of protein kinase C activation on the release of [3H]acetylcholine in the presence of vesamicol. J. Neurochem. 69:2608–2611.

    Google Scholar 

  • Borowicz, K. K., Kleinrok, Z., and Czuczwar, S. J. (1999). Influence of 3-PPP, a sigma receptor ligand, on the anticonvulsive action of conventional antiepileptic drugs. Pharmacol. Res. 40:509–516.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  • Campochiaro, P., Ferkany, J. W., and Coyle, J. T. (1995). Excitatory amino acid analogs evoke release of endogenous amino acids and acetylcholine from chick retina in vitro. Vision Res. 25:1375–1386.

    Google Scholar 

  • Cheng, Y. C., and Prusoff, W. H. (1973). Relationship between the inhibition constant (K i ) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108.

    Google Scholar 

  • Cho, G.W., Kim, M. H., Chai, Y. G., Gilmor, M. L., Levey, A. I., and Hersh, L. B. (2000). Phosphorylation of the rat vesicular acetylcholine transporter. J. Biol. Chem. 275:19942–19948.

    Google Scholar 

  • Clarizia, A. D., Gomez, M. V., Romano-Silva, M. A., Parsons, S. M., Prado, V. F., and Prado, M. A. (1999). Control of the binding of a vesamicol analog to the vesicular acetylcholine transporter. Neuroreport 10: 2783–2787.

    Google Scholar 

  • Clarizia, A.D., Romano-Silva, M. A., Prado, V. F., Gomez, M.V., and Prado, M.A. (1998). Role of protein kinase C in the release of [3H]acetylcholine from myenteric plexus treated with vesamicol. Neurosci. Lett. 244:115–117.

    Google Scholar 

  • Cunha, R. A., Malva, J. O., and Ribeiro, J. A. (1999). Kainate receptors coupled to G(i)/G(o) proteins in the rat hippocampus. Mol. Pharmacol. 56:429–433.

    Google Scholar 

  • De Mello, F. G., De Mello, M. C. F., Hudson, R., and Klein, W. L. (1990). Selective expression of factors preventing cholinergic dedifferentiation. J. Neurochem. 54:886–892.

    Google Scholar 

  • De Moura Campos, L.C., and Hokoç, J.N. (1999). Ontogeny of cholinergic amacrine cells in the oppossum (Didelphis aurita) retina. Int. J. Dev. Neurosci. 17:795–804.

    Google Scholar 

  • Duarte, C. B., Ferreira, I. L., Santos, P. F., Carvalho, A. L., Agostinho, P. M., and Carvalho, A. P. (1998). Glutamate in life and death of retinal amacrine cells. Gen. Pharmacol. 30:289–295.

    Google Scholar 

  • Efange, S. M., Mach, R. H., Smith, C. R., Khare, A. B., Foulon, C., Akella, S. K., Childers, S. R., and Parsons, S.M. (1995). Vesamicol analogues as sigma ligands. Molecular determinants of selectivity at the vesamicol receptor. Biochem. Pharmacol. 49:791–797.

    Google Scholar 

  • Eiden, L. E. (1998). The cholinergic gene locus. J. Neurochem. 70:2227–2240.

    Google Scholar 

  • Fonnum, F. (1975). A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24:407–409.

    Google Scholar 

  • Hamburger,V., and Hamilton, H. L. (1951).Aseries of normal stages in the development of chick embryo. J. Morphol. 88:49–92.

    Google Scholar 

  • Hill, A. V. (1910). The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. (London) 40:iv–vii.

    Google Scholar 

  • Krantz, D. E., Waites, C., Oorschot, V., Liu, Y., Wilson, R. I., Tan, P. K., Klumperman, J., and Edwards, R. H. (2000). A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles. J. Cell Biol. 149:379–396.

    Google Scholar 

  • Linn, D. M., Blazynski, C., Redburn, D. A., and Massey, S. C. (1991). Acetylcholine release from the rabbit retina mediated by kainate receptors. J. Neurosci. 11:111–122.

    Google Scholar 

  • Liu, W. S., and Heckman, C. A. (1998). The sevenfold way of PKC regulation. Cell Signal 10:529–542.

    Google Scholar 

  • Liu, Y., Krantz, D. E., Waites, C., and Edwards, R. H. (1999). Membrane trafficking of neurotransmitter transporters in the regulation of synaptic transmission. Trends Cell Biol. 9:356–363.

    Google Scholar 

  • Loureiro-dos-Santos, N. E., Reis, R. A. M., Kubrusly, R. C. C., de Almeida, O. M. M. S., Gardino, P. F., de Mello, M. C. F., and de Mello, F. G. (2001). Inhibition of choline acetyltransferase by excitatory amino acids as a possible mechanism for cholinergic dysfunction in the central nervous system. J. Neurochem. 77:1136–1144.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurment with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  • Millar, T. J., Ishimoto, I., Chubb, I.W., Epstein, M. L., Johnson, C.D., and Morgan, I.G. (1987). Cholinergic amacrine cells of the chicken retina: A light and electron microscope immunocytochemical study. Neuroscience 21:725–743.

    Google Scholar 

  • Parsons, S. M., Bahr, B. A., Rogers, G. A., Clarkson, E. D., Noremberg, K., and Hicks, B. W. (1993). Acetylcholine transporter-vesamicol receptor pharmacology and structure. Prog. Brain Res. 98:175–181.

    Google Scholar 

  • Prado, M. A. M., Reis, R. A. M., Prado, V. F., de Mello, M. C., Gomez, M. V., and de Mello, F. G. (2002). Regulation of acetylcholine synthesis and storage Neurochem. Int. 41:291–299.

    Google Scholar 

  • Reis, R. A., Kubrusly, R. C., de Mello, M. C., and de Mello, F. G. (1995). Transient coupling of NMDA receptor with ip3 production in cultured cells of the avian retina. Neurochem. Int. 26:375–380.

    Google Scholar 

  • Rodriguez-Moreno, A., and Lerma, J. (1998). Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20:1211–1218.

    Google Scholar 

  • Roghani, A., Feldman, J., Kohan, S. A., Shirzadi, A., Gundersen, C. B., Brecha, N., and Edwards, R. H. (1994). Molecular cloning of a putative vesicular transporter for acetylcholine. Proc. Natl. Acad. Sci. U.S.A. 91:10620–10624.

    Google Scholar 

  • Scatchard,G. (1949). The alterations of proteins for small molecules and ions. Ann.N.Y. Acad. Sci. 51:660–667.

    Google Scholar 

  • Shamsul Ola, M., Moore, P., El-Sherbeny, A., Roon, P., Agarwal, N., Sarthy, V. P., Casellas, P., Ganapathy, V., and Smith, S. B. (2001). Expression pattern of sigma receptor 1 mRNAand protein in mammalian retina. Mol. Brain. Res. 95: 86–95.

    Google Scholar 

  • Silveira Santos, B. A., and Hamassaki-Britto, D. E. (2001). Ionotropic glutamate receptors during the development of the chick retina. J. Comp. Neurol. 441:58–70.

    Google Scholar 

  • van der Kloot, W., Colasante, C., Cameron, R., and Molgo, J. (2000). Recycling and refilling of transmitter quanta at the frog neuromuscular junction. J. Physiol. 523(Pt. 1):247–258.

    Google Scholar 

  • Varoqui, H., and Erickson, J. D. (1997). Vesicular neurotransmitter transporters: Potential sites for the regulation of synaptic function. Mol. Neurobiol. 15:165–192.

    Google Scholar 

  • Voigt, T. (1986). Cholinergic amacrine cells in the rat retina. J. Comp. Neurol. 248:19–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loureiro-dos-Santos, N.E., Prado, M.A.M., de Melo Reis, R.A. et al. Regulation of Vesicular Acetylcholine Transporter by the Activation of Excitatory Amino Acid Receptors in the Avian Retina. Cell Mol Neurobiol 22, 727–740 (2002). https://doi.org/10.1023/A:1021809124814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021809124814

Navigation