Skip to main content
Log in

TiC/Ni3Al Composites Manufactured by Self-Propagating High-Temperature Synthesis and Hot Isostatic Pressing

  • Published:
Journal of Materials Synthesis and Processing

Abstract

TiC–20 wt% Ni3Al and TiC–40 wt% Ni3Al composite materials were produced by self-propagating high-temperature synthesis (SHS) and hot isostatic pressing (HIP). In the SHS method the reacted powders were compacted by uniaxial pressing immediately after the reaction. The microstructure of the materials produced by SHS consisted of spherical carbides embedded in the Ni3Al matrix, whereas the microstructure of the materials produced by HIPing was more irregular. A maximum hardness of 2010 HV1 was measured for the material produced by HIP and a maximum fracture toughness of 10.5 MPa m1/2 was measured for materials produced by SHS. High-temperature resistance was investigated by exposing the materials to 800°C in air for 110 h. The results obtained showed that the TiC + Ni3Al composite materials can be recommended for use in environments consisting of oxidizing atmosphere at temperatures around 800°C where high wear resistance is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. K. Udwadia and J. A. Puszynski, in In Situ Reactions for Synthesis of Composites, Ceramics, and Intermetallics, E. V. Barrera, F. D. S. Marquis, W. E. Frazier, S. G. Fishman, N. N. Thadhani, and Z. A. Munir, eds. (TMS, Warrendale, PA, 1995), p. 59.

    Google Scholar 

  2. P. Lintula and P. Ruuskanen, in Proceedings of the 5th European Conference on Advanced Materials and Processes and Applications, EUROMAT 97, Materials, Functionality & Design, Vol. 1. Metals and Composites, L. A. J. L. Sarton and H. B. Zeedijk, eds. (Netherlands Society for Materials Science, Zwijndrecht, 1997), p. 347.

    Google Scholar 

  3. R. Subramanian, J. H. Schneibel, K. B. Alexander, and K. P. Plucknett, Scripta Mat. 35, 583 (1996).

    Google Scholar 

  4. T. N. Tiegs, P. A. Menchhofer, K. P. Plucknett, K. B. Alexander, P. F. Becher, and S. B. Waters, in Proceedings, 4th International Conference on Powder Metallurgy in Aerospace, Defense and Demanding Applications, F. H. Froes, ed. (MPIF, Princeton, NJ, 1995), p. 211.

    Google Scholar 

  5. E. K. Ohriner, V. K. Sikka, and S. C. Deevi, in Proceedings, 4th International Conference on Powder Metallurgy in Aerospace, Defense and Demanding Applications, F. H. Fores, ed. (MPIF, Princeton, NJ, 1995), p. 197.

    Google Scholar 

  6. C. M. Ward-Close, R. Minor, and P. J. Doorbar, Intermetallics 4, 217 (1996).

    Google Scholar 

  7. C. T. Liu and K. S. Kumar, JOM 45(5), 38 (1993).

    Google Scholar 

  8. S. N. Basu and V. K. Sarin, Mater. Sci. Eng. A209, 206 (1996).

    Google Scholar 

  9. S. C. Deevi and V. K. Sikka, Intermetallics 4, 357 (1996).

    Google Scholar 

  10. M. Heinonen, M.Sc. dissertation (UMIST, 1996).

  11. G. R. Anstis, P. Chanticul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).

    Google Scholar 

  12. B. S. Terry and O. S. Chinyamakobvu, J. Mater. Sci. Lett. 10, 628 (1991).

    Google Scholar 

  13. B. S. Terry and O. S. Chinyamakobvu, Mater. Sci. Tech. 8, 399 (1992).

    Google Scholar 

  14. J. V. Wood, K. Dinsdale, P. Davies, and J. L. F. Kellie, Mater. Sci. Tech. 11, 1315 (1995).

    Google Scholar 

  15. V. B. Voitovich, High Temp. Mater. Proc. 16, 243 (1997).

    Google Scholar 

  16. J. Guo, C. Sun, H. Li, and H. Guan, Mater. Res. Soc. Symp. Proc. 133, 591 (1989).

    Google Scholar 

  17. D. J. Duquette, Mater. Sci. Eng. A198, 205 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keskinen, J., Maunu, J., Lintula, P. et al. TiC/Ni3Al Composites Manufactured by Self-Propagating High-Temperature Synthesis and Hot Isostatic Pressing. Journal of Materials Synthesis and Processing 7, 253–258 (1999). https://doi.org/10.1023/A:1021805711482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021805711482

Navigation