Skip to main content

Satellite Image Deblurring Using Complex Wavelet Packets

Abstract

The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem. Direct inversion leads to unacceptable noise amplification. Usually the problem is regularized during the inversion process. Recently, new approaches have been proposed, in which a rough deconvolution is followed by noise filtering in the wavelet transform domain. Herein, we have developed this second solution, by thresholding the coefficients of a new complex wavelet packet transform; all the parameters are automatically estimated. The use of complex wavelet packets enables translational invariance and improves directional selectivity, while remaining of complexity O(N). A new hybrid thresholding technique leads to high quality results, which exhibit both correctly restored textures and a high SNR in homogeneous areas. Compared to previous algorithms, the proposed method is faster, rotationally invariant and better takes into account the directions of the details and textures of the image, improving restoration. The images deconvolved in this way can be used as they are (the restoration step proposed here can be inserted directly in the acquisition chain), and they can also provide a starting point for an adaptive regularization method, enabling one to obtain sharper edges.

This is a preview of subscription content, access via your institution.

References

  1. Belge, M. and Miller, E. 1998. Wavelet domain image restoration using edge preserving prior models. In IEEE Proc. of ICIP, Chicago, USA.

  2. Bernardo, J. and Smith, A. 1994. Bayesian Theory. John Wiley and Sons: Chichester, UK.

    Google Scholar 

  3. Chang, S.G. and Vetterli, M. 1997. Spatial adaptive wavelet thresholding for image denoising. In Proc. of ICIP.

  4. Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M. 1997. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. IP, 6(2):298–311.

    Google Scholar 

  5. Coifman, R. and Donoho, D. 1995. Translation-invariant de-noising. Technical Report 475, Stanford University.

  6. Coifman, R., Mever, Y., and Wickerhauser, M. 1992. In Wavelet analysis and signal processing. Wavelets and Their Applications. John and Barlett, pp. 153–178.

  7. Donoho, D. 1995a. Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. App. and Comp. Harmonic Analysis, 2:101–126.

    Google Scholar 

  8. Donoho, D. 1995b. Denoising by soft thresholding. IEEE Trans. IT, 41:613–627.

    Google Scholar 

  9. Donoho, D. and Johnstone, I. 1994. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81:425–455.

    Google Scholar 

  10. Figueiredo, M. and Nowak, R. 1999. Bayesian wavelet-based image estimation using noninformative priors. In Proc. of the SPIE Conf. on Mathematical Modeling, Bayesian Estimation, and Inverse Problems, Denver, USA.

  11. Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. PAMI, 6(6):721–741.

    Google Scholar 

  12. Helstrom, C.W. 1967. Image restoration by the method of least squares. J. Opt. Soc. Amer.

  13. Jalobeanu, A., Blanc-Féraud, L., and Zerubia, J. 1999. Hyperparameter estimation for satellite image restoration by aMCMCML method. In LNCS–EMMCVPR. Springer: York.

    Google Scholar 

  14. Jalobeanu, A., Blanc-Féraud, L., and Zerubia, J. 2000a. Satellite image deconvolution using complex wavelet packets. INRIA Research Report 3955. Also available at www.inria.fr/RRRT/ RR-3955.html.

  15. Jalobeanu, A., Blanc-Féraud, L., and Zerubia, J. 2000b. Satellite image deconvolution using complex wavelet packets. In Proc. of ICIP, Vancouver.

  16. Jalobeanu, A., Blanc-Féraud, L., and Zerubia, J. 2000c. Estimation of adaptive parameters for satellite image deconvolution. In Proc. of ICPR, Barcelona, Spain.

  17. Kalifa, J. 1999. FrRestauration minimax et déconvolution dans une base d'ondelettes miroirs. Thèse de Doctorat, Ecole Polytechnique, France.

  18. Kalifa, J. and Mallat, S. 1998.Wavelet packet deconvolutions. Technical Report, CMAP, Ecole Polytechnique, Palaiseau, France.

  19. Kingsbury, N. 1998. The dual-tree complexwavelet transform:Anew efficient tool for image restoration and enhancement. In Proc. of EUSIPCO, Rhodes, Greece, pp. 319–322.

  20. Kingsbury, N. 1999. Image processing with complex wavelets. In Phil. Trans. Roy. Soc. London A, 357:2543–2560. Special issue for the discussion meeting on "Wavelets: The Key to Intermittent Information?" (Held on Feb. 24–25, 1999).

    Google Scholar 

  21. Kingsbury, N. 2001. Complexwavelet for shift invariant analysis and filtering of signals. Journal Appl. Comp. Harm. Anal., 10(3):234– 253.

    Google Scholar 

  22. Malfait, M. and Roose, D. 1997. Wavelet-based image denoising using a Markov random field a priori model. IEEE Trans. IP, 6:549–565.

    Google Scholar 

  23. Mallat, S. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. PAMI, 11(7):674–693.

    Google Scholar 

  24. Moulin, P. 1993. A wavelet regularization method for diffuse radartarget imaging and speckle-noise reduction. Journal of Mathematical Imaging and Vision, 3(1):123–134.

    Google Scholar 

  25. Rougé, B. 1995. Fixed chosen noise restoration. In IEEE 95, Philadelphia, USA.

  26. Rudin, L.-I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation noise removal algorithm. Physica D, 60:259–268.

    Google Scholar 

  27. Simoncelli, E. 1999. Bayesian denoising of visual images in the wavelet domain. In Bayesian Inference inWavelet-Based Methods, P. Muller and B. Vidakovic (Eds.), Springer Verlag: Berlin.

    Google Scholar 

  28. Tikhonov, A.N. 1963. Regularization of incorrectly posed problems. Sov. Math. Dokl., 4:1624–1627.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jalobeanu, A., Blanc-Féraud, L. & Zerubia, J. Satellite Image Deblurring Using Complex Wavelet Packets. International Journal of Computer Vision 51, 205–217 (2003). https://doi.org/10.1023/A:1021801918603

Download citation

  • deblurring
  • Bayesian estimation
  • complex wavelet packets
  • satellite and aerial images