Skip to main content
Log in

Thermodynamic Study of the Aqueous Rubidium and Manganese Bromide System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Crystallization of 2RbBr · MnBr2 · 2H2O, the only double salt obtained under standard conditions from saturated aqueous rubidium–manganese bromide solutions, was theoretically predicted using the “hard” and “soft” Lewis acids and bases concept and Pauling's rules. The RbBr—MnBr2—H2O system was thermodynamically simulated by the Pitzer model assuming a solubility diagram of three branches only: RbBr, 2RbBr · MnBr2 · 2H2O and MnBr2 · 4H2O. The theoretical result was experimentally proved at 25°C by the physicochemical analysis method and formation of the new double salt 2RbBr · MnBr2 · 2H2O was established. It was found to crystallize in a triclinic crystal system, space group −P1, a = 5.890(1) Å, b = 6.885(1) Å, c = 7.367(2) Å, α = 66.01(1)°, β = 87.78(2)°, γ = 84.93(2)°, V = 271.8(1) Å3, Z = 1, D x = 3.552 g-cm−3. The binary and ternary ion interaction parameters were calculated and the solubility isotherm was plotted. The standard molar Gibbs energy of the synthesis reaction, ΔrG om , of the double salt 2RbBr · MnBr2 · 2H2O from the corresponding simple salts RbBr and MnBr2 · 4H2O, as well as the standard molar Gibbs energy of formation, ΔfG om , and standard molar enthalpy of formation ΔfH om of the simple and double salts were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Balarew and S. Tepavitcharova, J. Solid State Chem. 66, 304 (1987).

    Google Scholar 

  2. C. Christov, J. Chem. Thermodyn. 26, 1071 (1994).

    Google Scholar 

  3. C. Balarew, V. Karaivanova, and T. Ojkova, Commun. Dept. Chem. Bulg. Acad. Sci. 3, 637 (1970).

    Google Scholar 

  4. F. A. H Schreinemakers, Z. Phys. Chem. 11, 75 (1893).

    Google Scholar 

  5. R. G. Pearson, J. Amer. Chem. Soc. 85, 3533 (1963).

    Google Scholar 

  6. G. Klopman, J. Amer. Chem. Soc. 90, 223 (1968).

    Google Scholar 

  7. C. Balarew. R. Duhlev, and D. Spassov, Crystallogr. Res. Technol. 19, 1469 (1984).

    Google Scholar 

  8. C. Balarew and R. Duhlev, J. Solid State Chem. 55, 1 (1984).

    Google Scholar 

  9. C. Balarew, Z. Kristallogr. 181, 35 (1987).

    Google Scholar 

  10. S. Tepavitcharova, C. Balarew, and S. Trendafilova, J. Solid State Chem. 114, 385 (1995).

    Google Scholar 

  11. S. Tepavitcharova, C. Balarew, Chr. Tzvetkova, and O. Angelova, J. Solid State Chem., in press.

  12. C. Balarew, C. Christov, VI. Valyashko, and S. Petrenko, J. Solution Chem. 22, 173 (1993).

    Google Scholar 

  13. Kim Hee-Taik, Y. William, and Yr. Frederick, J. Chem. Eng. Data 33, 177 (1988).

    Google Scholar 

  14. C. Balarew, D. Rabadjieva, S. Tepavitcharova, C. Christov, and O. Angelova, J. Chem. Thermodyn. 30, in press (1998).

  15. C. Christov, C. Balarew, VI. Valyashko, and S. Petrenko, J. Solution Chem. 23, 595 (1994).

    Google Scholar 

  16. C. Christov, J. Chem. Thermodyn. submitted.

  17. H.-J. Seifert and G. Flohr, Z. Anorg. Allg. Chem. 436, 244 (1977).

    Google Scholar 

  18. D. Wagman, W. Evans, V. Parker, R. Schumm, I. Halow, S. Bayler, R. Churney, and R. Nuttall, J. Phys. Chem. Ref. Data 11,Suppl. 2 (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balarew, C., Rabadjieva, D., Tepavitcharova, S. et al. Thermodynamic Study of the Aqueous Rubidium and Manganese Bromide System. Journal of Solution Chemistry 28, 949–958 (1999). https://doi.org/10.1023/A:1021792400558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021792400558

Navigation