Skip to main content
Log in

Stochastic Resonance and Coincidence Detection in Single Neurons

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

We demonstrate that a realistic neuron model expressed by the Hodgkin-Huxley equations shows a stochastic resonance phenomenon, by computing cross-correlation between input and output spike timing when the neuron receives both aperiodic signal input of spike packets and background random noise of both excitatory and inhibitory spikes. We consider that such a signal detection is realized because the neuron with active properties is sensitive to fluctuation caused by a sharp increase just after a sudden dip of excitatory noise spikes and a gradual decrease of inhibitory noise spikes. We also show that the model generates highly irregular firing of output spikes on the basis of the modulation detecting property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung, P.: Periodically driven stochastic systems, Phys. Rep., 234 (1993), 175-295.

    Google Scholar 

  2. Moss, F., Pierson, D. and O'Gorman, D.: Stochastic resonance: Tutorial and update, Int. J. Bifurc. and Chaos, 4(6) (1994), 1383-1397.

    Google Scholar 

  3. Wiesenfeld, K. and Moss, F.: Stochastic resonance and the benefits of noise: fromice ages to crayfish and SQUIDs, Nature, 373 (1995), 33-36.

    Google Scholar 

  4. Douglass, J., Wilkens, L., Pantazelou, E. and Moss, F.: Noise enhancement of the information transfer in crayfish mechanoreceptors by stochastic resonance, Nature, 365 (1993), 337-340.

    Google Scholar 

  5. Longtin, A.: Stochastic resonance in neuron models, J. Stat. Phys., 70 (1993), 309-327.

    Google Scholar 

  6. Collins, J. J., Chow, C. C. and Imhoff, T. T.: Stochastic resonance without tuning, Nature, 376 (1995), 236-238.

    Google Scholar 

  7. Bulsara, A. R., Elton, T. C., Doering, C. R., Lowen, S. B. and Lindenberg, K.: Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics, Phys. Rev. E, 53(4) (1996), 3958-3969.

    Google Scholar 

  8. Gluckman, B. J., Netoff, T. I., Neel, E. J., Ditto, W. L., Spano, M. L. and Schiff, S. J.: Stochastic resonance in a neuronal network from mammalian brain, Phys. Rev. Lett., 77(19) (1996), 4098-4101.

    Google Scholar 

  9. Chapeau-Blondeau, F., Godivier, X. and Chambet, N.: Stochastic resonance in a neuron model that transmits spike trains, Phys. Rev. E, 53 (1996), 1273-1275.

    Google Scholar 

  10. Fakir, R.: Nonstationary stochastic resonance in a single neuronlike system, Phys. Rev. E, 58 (1998), 5175-5178.

    Google Scholar 

  11. Calvin, W. H. and Stevens, C. F.: Synaptic noise and other sources of randomness in motoneuron interspike intervals, J. Neurophysiol., 31 (1968), 574-587.

    Google Scholar 

  12. Softky, W. R. and Koch, C.: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, J. Neuroscience, 13(1) (1993), 334-350.

    Google Scholar 

  13. Abeles, M.: Role of the cortical neuron: integrator or coincidence detector? Israel J. Med. Sci., 18 (1982), 83-92.

    Google Scholar 

  14. Mainen, Z. F. and Sejnowski, T. J.: Reliability of spike timing in neocortical neurons, Science, 268 (1995), 1503-1506.

    Google Scholar 

  15. Markram, H., Lübke, J., Frotscher, M. and Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science, 275 (1997), 213-215.

    Google Scholar 

  16. van Steveninck, R. R. D., Lewen, G. D., Strong, S. P., Koberle, R. and Bialek, W.: Reproducibility and variability in neural spike trains, Science, 275 (1997), 1805-1808.

    Google Scholar 

  17. Azouz, R. and Gray, C. M.: Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo, Proc. Natl. Acad. Sci. USA, 97 (2000), 8110-8115.

    Google Scholar 

  18. Robinson, H. P. C. and Kawai, N.: Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons, J. Neurosci. Methods, 49 (1993), 157-165.

    Google Scholar 

  19. Robinson, H. P. C.: Analog circuits for injecting time-varying linear and nonlinear (NMDA-type) conductances into neurons, J. Physiol., 518P (1999), 9-10.

    Google Scholar 

  20. Hodgkin, A. L. and Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.

    Google Scholar 

  21. Rall, W.: Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic inputs, J. Neurophysiol., 30 (1967), 1138-1168.

    Google Scholar 

  22. Jack, J. J. B., Noble, D. and Tsein, R. W.: Electrical Current Flow in Excitable Cells, Oxford, Claredon Press, second edition, 1975.

    Google Scholar 

  23. Diesmann, M., Gewaltig, M. and Aertsen, A.: Stable propagation of synchronous spiking in cortical neural network, Nature, 402 (1999), 529-533.

    Google Scholar 

  24. Palm, G., Aertsen, A. and Gerstein, G. L.: On the significance of correlations among neuronal spike trains, Biol. Cybern., 59 (1988), 1-11.

    Google Scholar 

  25. Aertsen, A., Gerstein, G. L., Habib, M. K. and Palm, G.: Dynamics of neuronal firing correlation: Modulation of 'effective connectivity', J. Neurophysiol., 61(5) (1989), 900-917.

    Google Scholar 

  26. Softky, W. R.: Simple codes versus efficient codes, Curr. Opin. Neurobiol., 5 (1995), 239-247.

    Google Scholar 

  27. Fujii, H., Ito, H., Aihara, K., Ichinose, N. and Tsukada, M.: Dynamical cell assembly hypothesis-theoretical possibility of spatio-temporal coding in the cortex, Neural Networks, 9(8) (1996), 1303-1350.

    Google Scholar 

  28. Watanabe, M. and Aihara, K.: Chaos in neural networks composed of coincidence detector neurons, Neural Networks, 10(8) (1997), 1353-1359.

    Google Scholar 

  29. Watanabe, M., Aihara, K. and Kondo, S.: A dynamic neural network with temporal coding and functional connectivity, Biol. Cybern., 78 (1998), 87-93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakumura, Y., Aihara, K. Stochastic Resonance and Coincidence Detection in Single Neurons. Neural Processing Letters 16, 235–242 (2002). https://doi.org/10.1023/A:1021786719535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021786719535

Navigation