A Perturbation Method for Complex Root Finding of Nonlinear Electromagnetic Waves

Abstract

Aspects of the perturbation method are presented and implemented on the analytic function of the complex variable for the propagation of nonlinear electromagnetic surface guided by a thin film. The behavior of nonlinear TE waves guided by asymmetrical dielectric thin film, bounded by a generalizes nonlinear substrate with a permittivity of the form ɛ ∼ | E |δ is analyzed. The complex roots, which correspond to the propagation and attenuation coefficient are obtained and discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.G. Ma, An Exact TE-Solution in Arbitrarily Nonlinear/Anisotropic Media, in proc. MIOP '93, Sindelfingen, Germany, pp. 595–599, 1993.

  2. 2.

    J.P. Torres and L. Torner, Universal Diagrams for TE Waves Guided by Thin Films Bounded by Saturable Nonlinear Media, IEEE J. Quantum Electron., vol. 29, pp. 917–925, 1993.

    Google Scholar 

  3. 3.

    G.I. Stegeman and C.T. Seaton, Nonlinear Integrated Optics, J. Appl. Phys., vol 58, no. 12, pp. R57–R78, 1985.

    Google Scholar 

  4. 4.

    N. Saiga, Calculation of TE Modes in Graded-Index Nonlinear Optical Waveguides with Arbitrary Profile of Refractive Index, J. Opt. Soc. Amer. B, vol. 8, no. 1, pp.88–94, 1991.

    Google Scholar 

  5. 5.

    G.I. Stegeman, E.M. Wright, C.T. Seaton, J.V. Moloney, T.P. Shen, A.A. Maradudin, and R.F. Wallis, Nonlinear Slab-Guided Waves in Non-Kerr Like Media, IEEE J. Quantum Electron., vol. 22, pp. 977–983, 1986.

    Google Scholar 

  6. 6.

    Y. Chen, Nonlinear Fibers with Arbitrary Nonlinearity, J. Opt. Soc. Amer. B, vol. 8, no. 11, pp. 2338–2341, 1991.

    Google Scholar 

  7. 7.

    J.G. Ma, and I. Wolff, Propagation Characteristics of TE-Waves Guided by Thin Films Bounded by Nonlinear Media, IEEE Trans. Microwave Theory Techn., vol. 43, no. 4, pp. 790–795, 1995.

    Google Scholar 

  8. 8.

    G.I. Stegeman, J.D. Valera, C.T. Seaton, J. Sipe, and A.A. Maradudin, Nonlinear S-Polarized surface Plasmon Polaritions, Opt. Commun., vol. 52, no. 3, pp. 293–296, 1984.

    Google Scholar 

  9. 9.

    A.H. Nayfeh, Introduction to Perturbation Techniques, A Wiley-Interscience Publication, John Wily & Sons, N-Y, 1981.

    Google Scholar 

  10. 10.

    A. Nayfeh, Perturbation methods Wiley, New York, 1973.

    Google Scholar 

  11. 11.

    S.X. She, Metal-clad Multilayer Dielectric Waveguide: Accurate Perturbation Analysis, J. Opt. Soc. Amer. A, vol. 7, no. 9, pp. 1582–1590, 1990.

    Google Scholar 

  12. 12.

    NAG FORTRAN Library Manual Mark 6 Numerical Algorithm Group, Downers, Group III, 1977.

  13. 13.

    IMSL Library Reference Manual, 7th ed. International Mathematical Libraries, Houston, Tex, 1979.

  14. 14.

    W.H. Press, B.P. Flannery, S.A. Teukolskv and W.T. Vetterling Numerical Recipes, The Art of Scientific Computing, FORTRAN Version, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  15. 15.

    MINPACK Documentation Applied Mathematical Division, Argonne National Library, Argonne, III, 1979.

  16. 16.

    S.D. Cont and C.D. Boor, Elementary Numerical Analysis, McGraw.-HILL Kogakusha, Ltd, 1972.

  17. 17.

    R.V. Churchill and J.W. Brown, Complex Variable and Applications, McGraw-Hill, New York, 1984.

    Google Scholar 

  18. 18.

    A.P. Zhao, Numerical Modeling of TE and TM Modes in Lossy Nonlinear Optical Waveguides, Opt. Quantum Electron., vol. 27, pp. 735–740, 1995.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shabat, M.M., Abd-El naby, M.A., Barakat, N.M. et al. A Perturbation Method for Complex Root Finding of Nonlinear Electromagnetic Waves. International Journal of Infrared and Millimeter Waves 20, 1389–1402 (1999). https://doi.org/10.1023/A:1021783029924

Download citation

  • Nonlinear TE waves
  • Lossy waveguides
  • Numerical and perturbations techniques