Advertisement

Journal of Dynamical and Control Systems

, Volume 5, Issue 4, pp 437–451 | Cite as

Discovery of the Maximum Principle

  • R. V. Gamkrelidze
Article

Abstract

A short history of the discovery of the maximum principle in optimal control theory by L. S. Pontryagin and his associates is presented.

Optimal control maximum principle Hamiltonian systems symplectic invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Boltyanski, R. V. Gamkrelidze, and L. S. Pontryagin, On the theory of optimal processes. (Russian) Dokl. Akad. Nauk SSSR 110 (1956) 7–10.Google Scholar
  2. 2.
    R. V. Gamkrelidze, On the theory of optimal processes in linear systems. (Russian) Dokl. Akad. Nauk SSSR 116 (1957), 9–11.Google Scholar
  3. 3.
    _____, Time optimal processes in linear systems. (Russian) Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 449–474.Google Scholar
  4. 4.
    V. G. Boltyanski, The maximum principle in the theory of optimal processes. (Russian) Dokl. Akad. Nauk SSSR 119 (1958), 1070–1073.Google Scholar
  5. 5.
    V. G. Boltyanski, R. V. Gamkrelidze, and L. S. Pontryagin, The theory of optimal processes I. The maximum principle. (Russian) Izv. Akad. Nauk SSSR, Ser. Mat. 24 (1960), 3–42.Google Scholar
  6. 6.
    L. S. Pontryagin, Optimal processes of regulation. Proc. Intern. Math. Congr., Edinburgh, 14–21 August, 1958, Cambridge University Press, 1960.Google Scholar
  7. 7.
    R. V. Gamkrelidze, On sliding optimal regimes. (Russian) Dokl. Akad. Nauk SSSR 143 (1962), 1243–1245.Google Scholar
  8. 8.
    _____. Principles of optimal control theory. Plenum Press, 1960.Google Scholar
  9. 9.
    A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry I. Regular extremals. J. Dynam. Control Syst. 3 (1997), No. 3, 343–389.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • R. V. Gamkrelidze
    • 1
  1. 1.Ross. Akad. NaukSteklov Mathematical InstituteMoscowRussia

Personalised recommendations