Skip to main content
Log in

Subcortical White Matter Interstitial Cells: Their Connections, Neurochemical Specialization, and Role in the Histogenesis of the Cortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. I. V. Dyuizen, S. G. Kalinichenko, V. E. Okhotin, and P. A. Motavkin, “Nitroxidergic neurons of the white matter of the hippocampal formation in humans,” Morfologiya, 113, No. 1, 47–51 (1998).

    Google Scholar 

  2. I. V. Dyuizen, V. E. Okhotin, S. G. Kalinichenko, and P. A. Motavkin, “The mediator organization of neurons in the hippocampal formation,” Morfologiya, 10, No. 6, 49–54 (1996).

    Google Scholar 

  3. S. G. Kalinichenko, V. E. Okhotin, and P. A. Motavkin, “NO-ergic function of Lugaro and Golgi cells in the cerebellar cortex of rabbits,” Tsitologiya, 39, No. 2/3, 159–163 (1997).

    Google Scholar 

  4. S. V. Koroleva and I. P. Ashmarin, “Neuropeptide Y: multiple and apparently contradictory functions. Analysis of possible mediated effects,” Usp. Fiziol. Nauk., 31, No. 1, 31–46 (2000).

    Google Scholar 

  5. V. E. Okhotin and S. G. Kalinichenko, “Morphofunctional characteristics of neurons and their connections in the human and animal neocortex,” Usp. Fiziol. Nauk., 28, No. 2, 40–56 (1997).

    Google Scholar 

  6. V. E. Okhotin and S. G. Kalinichenko, “Candelabra cells and axoaxonal inhibition in the neocortex, hippocampus, and dentate fascia,” Morfologiya, 119, No. 3, 7–23 (2001).

    Google Scholar 

  7. V. E. Okhotin and S. G. Kalinichenko, “Histophysiology of basket cells in the neocortex,” Morfologiya, 120, No. 4, 7–24 (2001).

    Google Scholar 

  8. V. E. Okhotin and V. V. Kupriyanov, “Neurovasal relationships in the neocortex of the human brain,” Morfologiya, 110, No. 4, 17–22 (1996).

    Google Scholar 

  9. V. E. Okhotin, E. G. Markova, A. V. Revishchin, and G. Yu. Sulimov, “NO-synthase in Betts neurons of the human cerebral cortex,” in: International Conference on Functional Morphology (Kolosov Lectures), I. P. Pavlov Institute of Physiology Press, St. Petersburg (1997)., p. 68.

    Google Scholar 

  10. V. E. Okhotin, A. V. Revishchin, and I. V. Dyuizen, “Topography and connections of GABAergic cells in the dentate fascia and hippocampus: immunohistochemical studies of parvalbumin (Pv), calbindin (Cb), NO-synthase (NOS), and calretinin (Cr),” Ross. Morfol. Vedomosti, No. 1-2, 75–76 (1999).

  11. V. P. Reutov, E. G. Sorokina, V. E. Okhotin, and N. S. Kositsyn, Cyclic Conversion of Nitric Oxide in the Mammalian Body [in Russian], Nauka, Moscow (1997).

    Google Scholar 

  12. F. Aboitiz, “Evolution of isocortical organization. A tentative scenario including roles of reelin, p35.cdk5 and the subplate zone,” Cereb. Cortex, 9, 655–661 (1999).

    Google Scholar 

  13. S. Akbarian, W. E. Bunney, S. G. Potkin, et al., “Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances in cortical development,” Arch. Gen. Psychiatr., 50, 169–177 (1993).

    Google Scholar 

  14. S. Akbarian, J. J. Kim, S. G. Potkin, et al., “Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients,” Arch. Gen. Psychiatr., 53, 425–436 (1996).

    Google Scholar 

  15. S. Akbarian, A. Vinuela, J. J. Kim, et al., “Distorted distribution of nicotinamide dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development,” Arch. Gen. Psychiatr., 50, 178–187 (1993).

    Google Scholar 

  16. K. L. Allendoerfer and C. J. Schatz, “The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex,” Ann. Rev. Neurosci., 127, 185–218 (1994).

    Google Scholar 

  17. S. Anderson, O, Marin, C. Horn, et al., “Distinct cortical migrations from the medial and lateral ganglionic eminences,” Development, 128, 353–363 (2001).

    Google Scholar 

  18. N. C. Andreasen, “Schizophrenia: the fundamental questions,” Brain Res. Rev., 31, 106–112 (2000).

    Google Scholar 

  19. L. C. Ang and D. D. Shul, “Peptidergic neurons of subcortical white matter in aging and Alzheimer's brain,” Brain Res., 674, 329–335 (1995).

    Google Scholar 

  20. J. B. Angevine, Jr. and R. L. Sidman, “Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse,” Nature, 192, 766–768 (1961).

    Google Scholar 

  21. C. Auladell, P. Perez-Sust, H. Super, and E. Soriano, “The early development of thalamocortical and corticothalamic projections in the mouse,” Anat. Embryol. (Berlin), 201, 169–179 (2000).

    Google Scholar 

  22. S. A. Bayer and J. Altman, “Development of layer I and the subplate in the rat neocortex,” Exp. Neurol., 107, 48–62 (1990).

    Google Scholar 

  23. F. M. Benes, “Emerging principles of altered neural circuitry in schizophrenia,” Brain Res. Rev., 31, 251–269 (2000).

    Google Scholar 

  24. N. E. J. Berman and E. Frederickson, “Morphology and laminar distribution of neuropeptide Y immunoreactive neurons in the human striate cortex,” Synapse, 11, 20–27 (1992).

    Google Scholar 

  25. G.-Q. Bi and M.-M. Poo, “Synaptic modification by correlated activity: Hebb's postulate revisited,” Ann. Rev. Neurosci., 24, 139–166 (2001).

    Google Scholar 

  26. A. R. Bicknese, A. M. Sheppard, D. D. M. O'Leary, et al., “Thalamocortical axons extend along a chondroitin sulfate proteoglycanenriched pathway coincident with the neocortical subplate and distinct from the efferent path,” J. Neurosci., 14, 3500–3510 (1994).

    Google Scholar 

  27. Boulder Committee, “Embryonic vertebrate central nervous system: revised terminology,” Anat. Rec., 166, 257–262 (1970).

    Google Scholar 

  28. H. Braak, “Architectonics as seen by lipofuscin stains,” in: Cerebral Cortex. 1. Cellular Components of the Cerebral Cortex, Plenum Press, New York (1984), pp. 59–104.

    Google Scholar 

  29. W. E. Bunney and B. G. Bunney, “Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia,” Brain Res. Rev., 31, 138–146 (2000).

    Google Scholar 

  30. B. G. Bunney, S. G. Potkin, and W. E. Bunney, “Neuropathological studies of brain tissue in schizophrenia,” J. Psychiatr. Res., 31, 159–173 (1997).

    Google Scholar 

  31. S. M. Catalano, R. T. Robertson, and H. P. Killackey, “Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat,” Proc. Natl. Acad. Sci. USA, 88, 2999–3003 (1991).

    Google Scholar 

  32. V. Chan-Palay, Y. S. Allen, W. Lang, et al., “Cytology and distribution in normal human cerebral cortex of neurons immunoreactive with antisera against neuropeptide Y,” J. Comp. Neurol., 238, 382–389 (1985).

    Google Scholar 

  33. V. Chan-Palay, W. Lang, Y. S. Allen, et al., “Cortical neurons immunoreactive with antisera against neuropeptide Y are altered in Alzheimer's-type dementia,” J. Comp. Neurol., 238, 390–400 (1985).

    Google Scholar 

  34. J. J. M. Chun and C. J. Shatz, “Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population,” J. Comp. Neurol., 282, 555–569 (1989).

    Google Scholar 

  35. B. Clancy and L. J. Cauller, “Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex,” J. Comp. Neurol., 407, 275–286 (1999).

    Google Scholar 

  36. B. Clancy, R. B. Darlington, and B. L. Finlay, “Translating developmental time across mammalian species,” Neurosci., 105, 7–17 (2001).

    Google Scholar 

  37. B. Clancy, M. Silva-Filho, and M. J. Friedlander, “Structure and projections of white matter neurons in the postnatal rat visual cortex,” J. Comp. Neurol., 434, 233–252 (2001).

    Google Scholar 

  38. A. Cobas, A. Fairen, G. Alvarez-Bolado, and M. P. Sanchez, “Prenatal development of the intrinsic neurons of the rat neocortex: A comparative study of the distribution of GABA-imunoreactive cells and the GABA-A receptor,” Neurosci., 40, 375–397 (1991).

    Google Scholar 

  39. L. C. DeAzevedo, C. Hedin-Pereira, and R. Lent, “Callosal neurons in the cingulate cortical plate and subplate of human fetuses,” J. Comp. Neurol., 386, 60–70 (1997).

    Google Scholar 

  40. J. A. DeCarlos and D. D. M. O'Leary, “Growth and targeting of subplate axons and establishment of major cortical pathways,” J. Neurosci., 12, 1194–1211 (1992).

    Google Scholar 

  41. I. DeDiego, A. Smith-Fernandez, and A. Fairen, “Cortical calls that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats,” Eur. J. Neurosci., 6, 983–997 (1994).

    Google Scholar 

  42. J. DeFelipe, P. Marco, A. Fairen, and E. G. Jones, “Inhibitory synaptogenesis in mouse somatosensory cortex,” Cereb. Cortex, 7, 619–634 (1997).

    Google Scholar 

  43. M. F. DeFreitas, P. S. McQuillen, and C. J. Shatz, “A novel p75NTR signaling pathway promotes survival, not death, of immunopurified subplate neurons,” J. Neurosci., 21, 5121–5129 (2001).

    Google Scholar 

  44. I. Delalle, P. Evers, I. Kostovic, and H. B. M. Uylings, “Laminar distribution of neuropeptide Y-immunoreactive neurons in human prefrontal cortex during development,” J. Comp. Neurol., 379, 515–522 (1997).

    Google Scholar 

  45. J. C. De la Torre and G. B. Stefano, “Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide,” Brain Res. Rev., 34, 119–136 (2000).

    Google Scholar 

  46. J. A. Del Rio, A. Martinez, C. Auladell, and E. Soriano, “Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages,” Cereb. Cortex, 10, 784–801 (2000).

    Google Scholar 

  47. M. J. Donoghue and P. Rakic, “Molecular evidence for early specification of presumptive functional domains in embryonic primate cerebral cortex,” J. Neurosci., 19, 5967–5979 (1999).

    Google Scholar 

  48. I. V. Dyuizen, V. E. Okhotin, S. G. Kalinichenko, and P. A. Motavkin, “Neurochemical characteristics of neurons of the human hippocampal formation,” Neurosci. Behav. Physiol., 28, 94–100 (1998).

    Google Scholar 

  49. C. U. Economo and G. N. Koskinas, Die Cytoarchitektonic der Hirnrinde des Erwachsenen Menschen, Julius Springer, Wien (1925).

    Google Scholar 

  50. E. M. Finney and C. J. Schatz, “Establishment of patterned thalamocortical connections does not require nitric oxide synthase,” J. Neurosci., 18, 8826–8838 (1998).

    Google Scholar 

  51. E. M. Finney, J. R. Stone, and C. J. Schatz, “Major glutamatergic projection from subplate into visual cortex during development,” J. Comp. Neurol., 398, 105–118 (1998).

    Google Scholar 

  52. H. C. Fischer and R. O. Kuljis, “Multiple types of nitrogen monoxide synthase-/NADPH diaphorase-containing neurons in the human cerebral neocortex,” Brain Res., 654, 105–117 (1994).

    Google Scholar 

  53. R. M. Fitzsimonds and M.-M. Poo, “Retrograde signaling in the development and modification of synapses,” Physiol. Rev., 78, 143–170 (1998).

    Google Scholar 

  54. J. G. Flanagan and P. Vanderhaeghen, “The ephrins and eph receptors in neural development,” Ann. Rev. Neurosci., 21, 309–345 (1998).

    Google Scholar 

  55. E. Friauf, S. K. McConnell, and C. J. Schatz, “Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex,” J. Neurosci., 10, 2601–2613 (1990).

    Google Scholar 

  56. W. J. Friedman, “Neurotrophins induce death of hippocampal neurons via the p75 receptor,” J. Neurosci., 20, 6340–6346 (2000).

    Google Scholar 

  57. H. Fukumitsu, Y. Furukawa, M. Tsusaka, et al., “Simultaneous expression of brain-derived neurotrophic factor and neurotrophin-3 in Cajal-Retzius, subplate and ventricular progenitor cells during early development stages of the rat cerebral cortex,” Neurosci., 84, 115–127 (1998).

    Google Scholar 

  58. A. Ghosh and C. J. Schatz, “Involvement of subplate neurons in the formation of ocular dominance columns,” Science, 255, 1441–1443 (1992).

    Google Scholar 

  59. A. Ghosh and C. J. Schatz, “A role for subplate neurons in the patterning of connections from thalamus to neocortex,” Development, 117, 1031–1047 (1993).

    Google Scholar 

  60. A. Ghosh and C. J. Schatz, “Segregation of geniculocortical afferents during the critical period: a role for subplate neurons,” J. Neurosci., 14, 3862–3880 (1994).

    Google Scholar 

  61. P. S. Goldman-Rakic and P. Rakic, “Experimental modification of gyral patterns,” in: Cerebral Dominance: the Biological Foundation, Harvard University Press, Cambridge, MA (1984), pp. 179–192.

    Google Scholar 

  62. I. L. Hangaru, W. Kib, and H. J. Luhmann, “Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex,” Cereb. Cortex, 11, 400–410 (2001).

    Google Scholar 

  63. K. Harsanyi and M. J. Friedlander, “Transient synaptic potentiation in the visual cortex. II. Developmental regulation,” J. Neurophysiol., 77, 1284–1293 (1997).

    Google Scholar 

  64. K. Herrman, A. Antonini, and C. J. Schatz, “Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons,” Eur. J. Neurosci., 6, 1729–1742 (1994).

    Google Scholar 

  65. E. J. Huang and L. F. Reichardt, “Neurotrophins: roles in neuronal development and function,” Ann. Rev. Neurosci., 24, 677–736 (2001).

    Google Scholar 

  66. E. G. Jones, “Cortical development and thalamic pathology in schizophrenia,” Schizophrenia Bull., 23, 483–501 (1997).

    Google Scholar 

  67. M. Judas, N. Sestan, and I. Kostovic, “Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals,” Microsci. Res. Techn., 45, 410–419 (1999).

    Google Scholar 

  68. A. Kalsbeek, P. Voorn, R. M. Buijs, et al., “Development of the dopaminergic innervation in the prefrontal cortex of the rat,” J. Comp. Neurol., 269, 58–72 (1988).

    Google Scholar 

  69. T. Kaneko, R. Shigemoto, S. Nakanishi, and M. Mizuno, “Morphological and chemical characteristics of substance P receptor-immunoreactive neurons in the rat neocortex,” Neurosci., 60, 199–211 (1994).

    Google Scholar 

  70. L. C. Katz and C. J. Schatz, “Synaptic activity and the construction of cortical circuits,” Science, 274, 1133–1138 (1996).

    Google Scholar 

  71. G. Khursigara, J. Bertin, H. Yano, et al., “A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2,” J. Neurosci., 21, 5854–5863 (2001).

    Google Scholar 

  72. I. Kostovic, “Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life,” Prog. Brain Res., 85, 223–240 (1990).

    Google Scholar 

  73. I. Kostovic and M. Judas, “Transient patterns of organization of the human fetal brain,” Croat. Med. J., 39, 107–114 (1998).

    Google Scholar 

  74. I. Kostovic and M. E. Molliver, “A new interpretation of the laminar development of cerebral cortex: synaptogenesis in different layers of neopallium in the human fetus,” Anat. Rec., 178, 395 (1974).

    Google Scholar 

  75. I. Kostovic and P. Rakic, “Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon,” J. Neurocytol., 9, 219–242 (1980).

    Google Scholar 

  76. I. Kostovic and P. Rakic, “Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain,” J. Comp. Neurol., 297, 441–470 (1990).

    Google Scholar 

  77. I. Kostovic, A. Stefulj-Fuccic, L. Mrzljak, et al., “Prenatal and perinatal development of the somatostatin-immunoreactive neurons in the human prefrontal cortex,” Neurosci. Lett., 124, 153–156 (1991).

    Google Scholar 

  78. N. W. Kowall, B. J. Quigley, Jr., J. E. Krause, et al., “Substance P and substance P receptor histochemistry in human neurodegenerative diseases,” Regul. Pept., 46, 174–185 (1993).

    Google Scholar 

  79. C.-Y. Kuan, K. A. Roth, R. A. Flavell, and P. Rakic, “Mechanisms of programmed cell death in the developing brain,” Trends Neurosci., 23, 291–297 (2000).

    Google Scholar 

  80. R. O. Kuljis and P. Rakic, “Multiple types of neuropeptide Y-containing neurons in primate neocortex,” J. Comp. Neurol., 280, 393–409 (1989).

    Google Scholar 

  81. A. A. Lavdas, M. Grigoriou, V. Pachnis, and J. G. Parnavelas, “The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex,” J. Neurosci., 19, 7881–7888 (1999).

    Google Scholar 

  82. A. Law, S. Gauthier, and R. Quirion, “Say NO to Alzheimer's disease: the putative links between nitric oxide and dementia of the Alzheimer's type,” Brain Res. Rev., 35, 73–96 (2001).

    Google Scholar 

  83. E. S. Lein, E. M. Finney, P. S. McQuillen, and C. J. Schatz, “Subplate neuron ablation alters neurotrophin expression and ocular dominance of column formation,” Proc. Natl. Acad. Sci. USA, 96, 13491–13495 (1999).

    Google Scholar 

  84. E. S. Lein and C. J. Schatz, “Dynamic regulation of BDNF and NT-3 expression during visual system development,” J. Comp. Neurol., 420, 1–18 (2000).

    Google Scholar 

  85. J. S. Lund and D. A. Lewis, “Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics,” J. Comp. Neurol., 328, 282–312 (1993).

    Google Scholar 

  86. M. B. Luskin and C. J. Schatz, “Studies of the earliest generated cells of the cat's visual cortex: Cogeneration of subplate and marginal zones,” J. Neurosci., 5, 1062–1075 (1985).

    Google Scholar 

  87. J. J. Luth, A. Jedlich, H. Hilbig, et al., “Postnatal development of NADPH-diaphorase/nitric oxide synthase positive nerve cells in the visual cortex of the rat,” J. Hirnforsch., 36, 313–328 (1995).

    Google Scholar 

  88. K. Mackarehtchian, C. K. Lau, I. Caras, and S. K. McConnell, “Regional differences in the developing cerebral cortex revealed by Ephrin-45 expression,” Cereb. Cortex, 9, 601–610 (1999).

    Google Scholar 

  89. M. Marin-Padilla, “Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization,” Z. Anat. Entwickl. Gesch., 134, 117–145 (1971).

    Google Scholar 

  90. M. Marin-Padilla, “Early ontogenesis of the human cerebral cortex,” in: Cerebral Cortex, Vol. 7, Development and Maturation of Cerebral Cortex, Plenum Press, New York (1988), pp. 1–34.

    Google Scholar 

  91. E. Markova, A. Revishchin, and V. Okhotin, “3-D Golgi and image analysis of the olfactory tubercle in schizophrenia,” Anal. Quant. Cytol. Histol., 22, 178–182 (2000).

    Google Scholar 

  92. C. Matute, P. Wahle, K. Gutierrez-Igraza, and K. Albus, “Distribution of neurons expressing substance P receptor messenger RNA in immature and adult cat visual cortex,” Exp. Brain Res., 97, 295–300 (1993).

    Google Scholar 

  93. A. K. McAllister, “Subplate neurons: A missing link among neurotrophins, activity, and ocular dominance plasticity?” Proc. Nat. Acad. Sci. USA, 96, 13600–13602 (1999).

    Google Scholar 

  94. A. K. McAllister, L. C. Katz, and D. C. Lo, “Neurotrophins and synaptic plasticity,” Ann. Rev. Neurosci., 22, 295–318 (1999).

    Google Scholar 

  95. S. K. McConnell, A. Ghosh, and C. J. Schatz, “Subplate neurons pioneer the first axon pathway from the cerebral cortex,” Science, 245, 978–982 (1989).

    Google Scholar 

  96. D. L. Meinecke and P. Rakic, “Expression of GABA and GABAA receptors by neurons of the subplate zone in developing primate occipital cortex: evidence for transient local circuits,” J. Comp. Neurol., 317, 91–101 (1992).

    Google Scholar 

  97. C. Metin, J.-P. Denizot, and N. Ropert, “Intermediate zone cells express calcium-permeable AMPA receptors and establish close contact with growing axons,” J. Neurosci., 20, 696–708 (2000).

    Google Scholar 

  98. C. Metin and P. Godement, “The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons,” J. Neurosci., 16, 3219–3235 (1996).

    Google Scholar 

  99. G. Meyer, T. Gonzalez-Hernandez, D. Galindo-Mireles, et al., “The efferent projections of neurons in the white matter of different cortical areas of the adult rat,” Anat. Embryol., 184, 99–102 (1991).

    Google Scholar 

  100. G. Meyer and P. Wahle, “Morphology, distribution and quantitative development of neurons in the white matter of the human cortex,” Soc. Neurosci. Abstr., 16, 332 (1990).

    Google Scholar 

  101. G. Meyer, P. Wahle, A. Castaneyra-Perdomo, and R. Ferres-Torres, “Morphology of neurons in the white matter of the adult human neocortex,” Exp. Brain Res., 88, 204–212 (1992).

    Google Scholar 

  102. T. Meynert, “Der Bau der Gross-Hirnrinde und seine ortlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium,” Vierteljahrsschr. Psychiatr., 1, 77–93 (1867).

    Google Scholar 

  103. B. Miller, L. Cou, and B. L. Finlay, “The early development of thalamocortical and corticothalamic projections,” J. Comp. Neurol., 335, 16–41 (1993).

    Google Scholar 

  104. F. D. Miller and D. R. Kaplan, “Neurotrophin signalling regulating neuronal apoptosis,” Cell Mol. Life Sci., 58, 1045–1053 (2001).

    Google Scholar 

  105. K. Mizukawa, S. R. Vincent, P. L. McGeer, and E. G. McGeer, “Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase-positive neurons in cat cerebral white matter,” Brain Res., 461, 264–281 (1988).

    Google Scholar 

  106. Z. Molnar, “Development and evolution of thalamocortical interactions,” Eur. J. Morphol., 38, 313–320 (2000).

    Google Scholar 

  107. Z. Molnar, R. Adams, and C. Blakemore, “Mechanisms underlying the early establishment of thalamocortical connections in the rat,” J. Neurosci., 18, 5723–5745 (1998).

    Google Scholar 

  108. Z. Molnar and C. Blakemore, “How do thalamic axons find their way to the cortex?” Trends Neurosci., 18, 389–397 (1995).

    Google Scholar 

  109. V. Mountcastle, “The columnar organization of the neocortex,” Brain, 120, 701–722 (1997).

    Google Scholar 

  110. L. Mrzljak, A. I. Levey, S. Belcher, and P. S. Goldman-Rakic, “Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey,” J. Comp. Neurol., 390, 112–132 (1998).

    Google Scholar 

  111. L. Mrzljak, H. B. M. Uylings, I. Kostovic, and C. G. can Eden, “Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study,” J. Comp. Neurol., 271, 355–386 (1988).

    Google Scholar 

  112. L. Mrzljak, H. B. M. Uylings, C. G. van Eden, and M. Judas, “Neuronal development in human prefrontal cortex in prenatal and postnatal stages,” Progr. Brain Res., 85, 185–222 (1990).

    Google Scholar 

  113. K. Neuburger, “Zur Histopathologie der multiplen Sklerose im Kindesalter,” Z. Neurol., 76, 384–414 (1922).

    Google Scholar 

  114. V. E. Okhotin and S. G. Kalinichenko, “Localization of NO-synthase in Lugaro cells and the mechanisms of NO-ergic interaction between inhibitory interneurons in the rabbit cerebellum,” Neurosci. Behav. Physiol., 30, 525–533 (2000).

    Google Scholar 

  115. V. E. Okhotin and V. V. Kupriyanov, “Neurovascular relationships in the human neocortex,” Neurosci. Behav. Physiol., 27, 482–488 (1997).

    Google Scholar 

  116. R. W. Oppenheim, “Programmed cell death,” in: Fundamental Neuroscience, Academic, San Diego (1999), pp. 581–609.

    Google Scholar 

  117. R. W. Oppenheim, R. A. Flavell, S. Vinsant, et al., “Programmed cell death of developing mammalian neurons after genetic deletion of caspases,” J. Neurosci., 21, 4752–4760 (2001).

    Google Scholar 

  118. J. G. Parnavelas, “The origin and migration of cortical neurones: new vistas,” Trends Neurosci., 23, 126–131 (2000).

    Google Scholar 

  119. D. J. Price and R. B. Lotto, “Influences of the thalamus on the survival of subplate and cortical plate cells in cultured embryonic mouse brain,” J. Neurosci., 16, 3247–3255 (1996).

    Google Scholar 

  120. E. Raedler, A. Raedler, and S. Geldhaus, “Dynamical aspects of neocortical histogenesis,” Anat. Embryol. (Berlin), 158, 253–269 (1980).

    Google Scholar 

  121. P. Rakic, “Mode of cell migration to the superficial layers of fetal monkey neocortex,” 145, 61–84 (1972).

    Google Scholar 

  122. P. Rakic, “Intrinsic and extrinsic determinants of neocortical parcellation: A radial unit model,” in: Neurobiology of Neocortex, Wiley, New York (1988), pp. 5–27.

    Google Scholar 

  123. P. Rakic, “Specification of cerebral cortical areas,” Science, 241, 170–176 (1988).

    Google Scholar 

  124. P. Rakic, “A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution,” Trends Neurosci., 18, 383–388 (1995).

    Google Scholar 

  125. P. Rakic, “Radial versus tangential migration of neuronal clones in the developing cerebral cortex,” Proc. Natl. Acad. Sci. USA, 92, 11323–11327 (1995).

    Google Scholar 

  126. P. Rakic, “Radial unit hypothesis of neocortical expansion,” in: Evolutionary Developmental Biology of the Cerebral Cortex, Novartis Found. Symp., 228, 30–42 (2000).

    Google Scholar 

  127. S. Rakic and N. Zecevic, “Programmed cell death in the developing human telencephalon,” Eur. J. Neurosci., 12, 2721–2734 (2000).

    Google Scholar 

  128. S. Ramon y Cajal, Studien uber der Hirnrinde des Menschen. I. Heft Die Sehrinde, Barth, Leipzig (1900).

    Google Scholar 

  129. O. Ranke, “Beitrage zur Kenntnis der normalen und pathologischen Hirnrindenbildung,” Beitr. Path. Anat., 47, 51–125 (1901).

    Google Scholar 

  130. R. L. Reep, “Cortical layer VII and persistent subplate cells in mammalian brains,” Brain Behav. Evol., 56, 212–234 (2000).

    Google Scholar 

  131. J. Regidor, L. Edvinsson, and I. Divac, “NOS neurones lie near branchings of cortical arteriolae,” NeuroReport, 4, 112–114 (1993).

    Google Scholar 

  132. R. T. Robertson, C. M. Annis, J. Baratta, et al., “Do subplate neurons comprise a transient population of cells in developing neocortex of rats?” J. Comp. Neurol., 426, 632–650 (2000).

    Google Scholar 

  133. A. M. Rojiani, J. A. Emery, K. J. Anderson, and J. K. Massey, “Distribution of heterotopic neurons in normal hemispheric white matter: a morphometric analysis,” J. Neuropath. Exp. Neurol., 55, 178–183 (1996).

    Google Scholar 

  134. M. C. Royston and G. W. Roberts, “Schizophrenia. When neurons go astray,” Curr. Biol., 5, 342–344 (1995).

    Google Scholar 

  135. A. F. Schindler and M.-M. Poo, “The neurotrophin hypothesis for synaptic plasticity,” Trends Neurosci., 23, 639–645 (2000).

    Google Scholar 

  136. C. J. Schatz, J. J. M. Chun, and M. B. Luskin, “The role of the subplate in the development of the mammalian telencephalon,” in: Cerebral Cortex, Vol. 7, Development and Maturation of Cerebral Cortex, Plenum Press, New York (1988), pp. 35–58.

    Google Scholar 

  137. A. F. Shering and P. R. Lowenstein, “Neocortex provides direct synaptic input to interstitial neurons of the intermediate zone of kittens and white matter of cats: a light and electron microscopic study,” J. Comp. Neurol., 347, 433–443 (1994).

    Google Scholar 

  138. S. A. Siwe, “”Das Gehirn: die mikroskopische Entwicklung des Grosshrins nach der Geburt,” in: Handbuch der Anatomie des Kindes, Bargman, Munich (1927), pp. 609–632.

    Google Scholar 

  139. J. F. Smiley, A. I. Levey, and M.-M. Mesulam, “Infracortical interstitial cells concurrently expressing m2-muscarinic receptors, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate-diaphorase in the human and monkey cerebral cortex,” Neurosci., 84, 755–769 (1998).

    Google Scholar 

  140. J. F. Smiley, J. P. McGinnis, and D. C. Javitt, “Nitric oxide synthase interneurons in the monkey cerebral cortex are subsets of the somatostatin, neuropeptide Y and calbindin cells,” Brain Res., 863, 205–212 (2000).

    Google Scholar 

  141. H. Super, E. Soriano, and H. B. M. Uylings, “The functions of the preplate in development and evolution of the neocortex and hippocampus,” Brain Res. Rev., 27, 40–64 (1998).

    Google Scholar 

  142. A. Terman and U. T. Brunk, “Lipofuscin: mechanisms of formation and increase with age,” APMIS, 106, 265–276 (1998).

    Google Scholar 

  143. R. Tuttle, B. L. Schlaggar, J. E. Braisted, and D. D. M. O'Leary, “Maturation-dependent upregulation of growth-promoting molecules in developing cortical plate controls thalamic and cortical neurite growth,” J. Neurosci., 15, 3039–3052 (1995).

    Google Scholar 

  144. N. Ulfig, F. Neudorfer, and J. Bohl, “Transient structures of the human fetal brain: subplate, thalamic reticular complex, ganglionic eminence,” Histol. Histopathol., 15, 771–790 (2000).

    Google Scholar 

  145. H. B. Uylings, “Development of the cerebral cortex in rodents and man,” Eur. J. Morphol., 38, 309–312 (2000).

    Google Scholar 

  146. H. B. Uylings and I. Delalle, “Morphology of neuropeptide Y-immunoreactive neurons and fibers in human prefrontal cortex during prenatal and postnatal development,” J. Comp. Neurol., 379, 523–540 (1997).

    Google Scholar 

  147. F. Valverde, J. A. De Carlos, and L. Lypez-Mascaraque, “Time of origin and early fate of preplate cells in the cerebral cortex of the rat,” Cereb. Cortex, 5, 483–493 (1995).

    Google Scholar 

  148. F. Valverde and M. V. Facal-Valverde, “Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: A correlated Golgi and electron microscopic study,” J. Comp. Neurol., 269, 168–192 (1988).

    Google Scholar 

  149. F. Valverde, M. C. Facal-Valverde, M. Santacana, and M. Heredia, “Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study,” J. Comp. Neurol., 290, 118–140 (1989).

    Google Scholar 

  150. F. Valverde, L. Lopez-Mascaraque, M. Santacana, and J. A. De Carlos, “Persistence of early-generated neurons in the rodent subplate: assessment of cell death in neocortex during the early postnatal period,” J. Neurosci., 15, 5014–5024 (1995).

    Google Scholar 

  151. S. R. Vincent, L. Skirboil, T. Hokfelt, et al., “Coexistence of somatostatin-and avian pancreatic polypeptide (APP)-like immunoreactivity in some forebrain neurons,” Neurosci., 7, 439–446 (1982).

    Google Scholar 

  152. P. Wahle, “Differential regulation of substance P and somatostatin in Martinotti cells of the developing cat visual cortex,” J. Comp. Neurol., 329, 519–538 (1993).

    Google Scholar 

  153. P. Wahle, G. Meyer, J.-Y. Wu, and K. Albus, “Morphology and axon terminal pattern of glutamate decarboxylase-immunoreactive cell types in the white matter of the cat occipital cortex during early postnatal development,” Dev. Brain Res., 36, 53–61 (1987).

    Google Scholar 

  154. M. N. Wallace, M. H. Tayebjee, F. S. Rana, et al., “Pyramidal neurones in pathological human motor cortex express nitric oxide,” Neurosci. Lett., 212, 187–190 (1996).

    Google Scholar 

  155. X. Wang, J. H. Bauer, Y. Li, et al., “Characterization of p75NTR apoptotic pathway using a novel cellular model,” J. Biol. Chem., 276, 33812–33820 (2001).

    Google Scholar 

  156. J. G. Wood, S. Martin, and D. J. Price, “Evidence that the earliest generated cells of the murine cerebral cortex form a transient population in the subplate and marginal zone,” Development. Brain Res., 66, 137–140 (1992).

    Google Scholar 

  157. R. Yuste, A. Peinado, and L. C. Katz, “Neuronal domains in developing neocortex,” Science, 257, 665–669 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okhotin, V.E., Kalinichenko, S.G. Subcortical White Matter Interstitial Cells: Their Connections, Neurochemical Specialization, and Role in the Histogenesis of the Cortex. Neurosci Behav Physiol 33, 177–194 (2003). https://doi.org/10.1023/A:1021778015886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021778015886

Keywords

Navigation