Skip to main content
Log in

Composite Grid Finite Element Method: Implementation and Iterative Solution with Inexact Subproblems

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

This paper concerns the composite grid finite element (FE) method for solving boundary value problems in the cases which require local grid refinement for enhancing the approximating properties of the corresponding FE space. A special interest is given to iterative methods based on natural decomposition of the space of unknowns and to the implementation of both the composite grid FEM and the iterative procedures for its solution. The implementation is important for gaining all benefits of the described methods. We also discuss the case of inexact subproblems, which can frequently arise in the course of hierarchical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Axelsson, V. A. Barker: Finite Element Solution of Boundary Value Problems. Academic Press, Orlando, Florida, 1984.

    Google Scholar 

  2. R. Blaheta: Iterative local refinement methods for nonlinear problems. HIPERGEOS report. IGAS Ostrava, 1998.

  3. R. Blaheta: Adaptive composite grid methods for problems of plasticity. Math. Comput. Simulation 50 (1999), 123–134.

    Google Scholar 

  4. R. Blaheta: Space decomposition methods: displacement decomposition, composite grid finite elements and overlapping domain decomposition. In: Proceedings of the Conference Contemporary Mathematical Methods in Engineering (J. Doležalová, ed.). TU Ostrava, 2000, pp. 7–16.

  5. R. Blaheta: GPCG: CG method with general preconditioning and its applications. In: Proceedings of the Conference PRISM'01 (O. Axelsson, B. Polman, M. Neytcheva, eds.). KUN Nijmegen, The Netherlands, 2001, pp. 9–15.

    Google Scholar 

  6. D. Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge UK, 1997.

    Google Scholar 

  7. J. H. Bramble, D. E. Ewing, J. E. Pasciak and A. H. Schatz: A preconditioning technique for the efficient solution of problems with local grid refinement. Comput. Meth. Appl. Mech. Engrg. 67 (1988), 149–159.

    Google Scholar 

  8. R. D. Cook: Finite Element Modeling for Stress Analysis. J. Wiley, New York, 1995.

    Google Scholar 

  9. T. F. Chan, T. P. Mathew: Domain decomposition algorithms. Acta Numerica 3 (1994), 61–143.

    Google Scholar 

  10. L. Hart, S. F. McCormick: Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Basic ideas. Parallel Comput. 12 (1989), 131–144.

    Google Scholar 

  11. J. Mandel, S. F. McCormick: Iterative solution of elliptic equations with refinement: the two-level case. In: Domain Decomposition Methods (T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund, eds.). SIAM, Philadelphia, 1989, pp. 81–92.

    Google Scholar 

  12. J. Mandel, S. F. McCormick: Iterative solution of elliptic equations with refinement: the model multi-level case. In: Domain Decomposition Methods (T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund, eds.). SIAM, Philadelphia, 1989, pp. 93–102.

    Google Scholar 

  13. S.F. McCormick: Fast adaptive grid (FAC) methods: theory for variational case. In: Defect Correction Methods: Theory and Applications (K. Böhmer, H. J. Stetter, eds.). Computing Supplementum, 5, Springer-Verlag, Wien, 1984, pp. 115–122.

    Google Scholar 

  14. S.F. McCormick: Multilevel Adaptive Methods for Partial Differential Equations. SIAM, Philadelphia, 1989.

    Google Scholar 

  15. S. F. McCormick, D. Quinlan: Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Performance results. Parallel Comput. 12 (1989), 145–156.

    Google Scholar 

  16. P. S. Vassilevski, L.T. Zikatanov: Local refinement solution of 3D elasticity equations. Project Report, COPERNICUS CP94-00820, 1995.

  17. O. B. Widlund: Optimal iterative refinement methods. In: Domain Decomposition Methods (T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund, eds.). SIAM, Philadelphia, 1989, pp. 114–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaheta, R., Byczanski, P. & Kohut, R. Composite Grid Finite Element Method: Implementation and Iterative Solution with Inexact Subproblems. Applications of Mathematics 47, 83–100 (2002). https://doi.org/10.1023/A:1021776900481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021776900481

Navigation