Skip to main content
Log in

Existence of Minimizers for Nonconvex Variational Problems with Slow Growth

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Consider the minimization problem

$$(P) min\left\{ {\int_0^1 {f\left( {t,u'\left( t \right)} \right)dt;u \in W^{1.1} \left( {\left[ {0,1} \right],\mathbb{R}''} \right), u\left( 0 \right) = } u_0 ,u\left( 1 \right) = u_1 } \right\},$$

in which \(f:\left[ {0,1} \right]x {\mathbb{R}}^n \to {\mathbb{R}} \cup \left\{ { + \infty } \right\}\)is a normal integrand. Define the convex function \(G:\mathbb{R}^n \to \mathbb{R} \cup \left\{ { + \infty } \right\}\) by \(G\left( p \right)\dot = \int_0^1 {f^* \left( {t,p} \right)dt.} \) It is known that, if the essential domain H of G is open, then problem (P) has a minimizer for any pair of endpoints (u 0, u 1). In this paper, the same result is proved under the condition that, for every point p in H, the subgradient set ∂G(p) is either bounded or empty (when H is open, this condition holds automatically).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekeland, I., and Temam, R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, Holland, 1977.

  2. Cesari, L., Optimization—Theory and Applications, Springer Verlag, New York, New York, 1983.

    Google Scholar 

  3. Clarke, F. H., An Indirect Method in the Calculus of Variations, Transactions of the American Mathematical Society, Vol. 336, pp. 655–673, 1993.

    Google Scholar 

  4. Cellina, A., Treu, G., and Zagatti, S., On the Minimum Problem for a Class of Noncoercive Functionals, Journal of Differential Equations, Vol. 127, pp. 225–262, 1996.

    Google Scholar 

  5. Crasta, G., and Malusa, A., Existence Results for Nonconvex Variational Problems, SIAM Journal on Control and Optimization, Vol. 34, pp. 2064–2076, 1996.

    Google Scholar 

  6. Olech, C., The Lyapunov Theorem: Its Extensions and Applications, Methods of Nonconvex Analysis, Edited by A. Cellina, Springer Verlag, New York, New York, pp. 86–103, 1990.

    Google Scholar 

  7. Crasta, G., An Existence Result for Noncoercive Nonconvex Problems in the Calculus of Variations, Nonlinear Analysis: Theory, Methods, and Applications, Vol. 26, pp. 1527–1533, 1996.

    Google Scholar 

  8. Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley Interscience, New York, New York, 1983.

    Google Scholar 

  9. Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

    Google Scholar 

  10. Clarke, F. H., and Loewen, P. D., An Intermediate Existence Theory in the Calculus of Variations, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Vol. 16, pp. 487–526, 1989.

    Google Scholar 

  11. Ambrosio, L., Ascenzi, O., and Buttazzo, G., Lipschitz Regularity for Minimizers of Integral Functionals with Highly Discontinuous Integrands, Journal of Mathematical Analysis and Applications, Vol. 142, pp. 301–316, 1989.

    Google Scholar 

  12. Kaiser, P. J., A Problem of Slow Growth in the Calculus of Variations, Atti del Seminario Matematico e Fisico dell'Università di Modena, Vol. 24, pp. 236–246, 1975.

    Google Scholar 

  13. Marcelli, C., One-Dimensional Noncercive Problems of the Calculus of Variations, Preprint, University of Perugia, 1995.

  14. Botteron, B., and Dacorogna, B., Existence and Nonexistence Results for Noncercive Variational Problems and Applications in Ecology, Journal of Differential Equations, Vol. 85, pp. 214–235, 1990.

    Google Scholar 

  15. Botteron, B., and Marcellini, P., A General Approach to the Existence of Minimizers of One-Dimensional Noncoercive Integrals of the Calculus of Variations, Annales de l'Institut Henry Poincaré, Vol. 8, pp. 197–223, 1991.

    Google Scholar 

  16. Rudin, W., Real and Complex Analysis, 3rd Edition, McGraw-Hill, Singapore, Republic of Singapore, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crasta, G. Existence of Minimizers for Nonconvex Variational Problems with Slow Growth. Journal of Optimization Theory and Applications 99, 381–401 (1998). https://doi.org/10.1023/A:1021774227314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021774227314

Navigation