Skip to main content
Log in

10 Tera Hertz Operation in One-Dimensional Quantum Interference Transistor (1-D QUIT) Devices

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A high performance quantum interference transistor (QUIT) realized using high mobility 1-D MODFET channels is presented. The operation of this 1-D QUIT is based on electrostatic Aharonov-Bohm quantum interference effect. The channel length of the device is smaller than the inelastic coherence length of the electrons in the quantum well wire channel, otherwise scattering will randomize electron's phase and destroy the quantum interference effect. Transport characteristics of the 0.2 μm channel 1-D QUIT are calculated at 4.2 °K and compared with a two-dimensional QUIT device reported in literature. Our calculations show a significant improvement of the transconductance in one-dimensional transistors compared with its two-dimensional counterpart. The maximum frequency of operation of the 1-D QUIT is in the Tera Hertz regime, which makes it very attractive device for high frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Datta, M.R. Melloch, S. Bandyopadhayay, and M.S. Lundstrom, Appl. Phys. Lett., 48, 487, 1986

    Google Scholar 

  2. Y. Aharonov and D. Bohm, Phys. Rev., 115, 485, 1959.

    Google Scholar 

  3. S.K. Islam and F.C. Jain, Supperlattices and Microstructures, Vol. 14,No. 1, 15, 1993.

    Google Scholar 

  4. H. Sakaki, Jpn. J. Appl. Phys., 21, L381. 1982

    Google Scholar 

  5. P.M. Petroff, A.C. Gossard, R.A. Logan and W. Weigmann, Appl. Phys. Lett., 41, 635, 1982.

    Google Scholar 

  6. J.S. Weiner, G. Danan, A. Pinczuk, J. Valladares, L.N. Pfeiffer and K. West, Phys. Rev. Lett., 63, 1641, 1989.

    Google Scholar 

  7. S. Tsukamoto, Y. Nagamune, M. Nishioka and Y. Arakawa, J. Appl. Phys., 71, 533, 1992.

    Google Scholar 

  8. R. Bhat, F. Kapan, D.M. Hwang, M.A. Koza, and C.P. Yun, J. Crystal Growth, 93, 850, 1988.

    Google Scholar 

  9. S.K. Islam, and F.C. Jain, Solid State Electronics, Vol. 39,No. 4, 615, 1996.

    Google Scholar 

  10. E.K. Heller, S.K. Islam, G. Zhao, and F.C. Jain, Proc. SPIE, Vol. 3384, 90, 1998

    Google Scholar 

  11. H.L. Stormer, R. Dingle, A.C. Gossard, and W. Wiegmann, Solid State Comm., 29, 705, 1979.

    Google Scholar 

  12. D.C. Tsui and R.A. Logan, Appl. Phys. Lett., 35, 99, 1979.

    Google Scholar 

  13. R.C. Miller,, A.C. Gossard, D.A. Kleinman and O. Munteau, Phys.Rev. B-29, 3740, 1984.

    Google Scholar 

  14. R.C. Miller,, A.C. Gossard, D.A. Kleinman and O. Munteau, Phys. Rev. B-29, 3740, 1984.

    Google Scholar 

  15. R. Tsu and L. Esaki, Appl. Phys. Lett., 22, 562, 1973

    Google Scholar 

  16. S.K. Islam and F.C. Jain, Proc. IEEE Sarnoff Symposium, Princeton, NJ, 1994.

  17. S. Bandyopadhayay, M.R. Melloch, S. Datta, B. Das, J.A. Cooper Jr. and M.S. Lundstrom, IEDM Technical Digest, 79, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, S.K., Jain, F.C. 10 Tera Hertz Operation in One-Dimensional Quantum Interference Transistor (1-D QUIT) Devices. International Journal of Infrared and Millimeter Waves 19, 1649–1659 (1998). https://doi.org/10.1023/A:1021763126173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021763126173

Navigation