Skip to main content
Log in

Administration of Aggregated Beta-Amyloid Peptide (25–35) Induces Changes in Long-Term Potentiation in the Hippocampus in Vivo

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Intracerebroventricular administration of aggregated β-amyloid protein fragment (25–35) (7.5 nmol/ventricle) was followed one month later by significant changes in the dynamics of long-term potentiation in the hippocampus in vivo, expressed as powerful and stable increases in the amplitude of evoked potentials. This phenomenon may be associated with oxidative stress in the hippocampus, which has previously been demonstrated in this model, and, thus, with disturbances in ion homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. S. Mitrokhina, M. Yu. Stepanichev, N. A. Lazareva, et al., “The effects of intracerebroventricular administration of fragment (25-35) of β-amyloid peptide on lipid peroxidation levels in rat brain structures and blood,” Dokl. Ros. Akad. Nauk., 368, No. 5, 711–713 (1999).

    Google Scholar 

  2. M. Yu. Stepanichev, N. A. Lazareva, M. V. Onufriev, et al., “The effects of administration of a β-amyloid peptide fragment on behavior in rats, ”Zh. Vyssh. Nerv. Deyat., 47, No. 3, 597–600 (1997).

    Google Scholar 

  3. B. Carette, P. Poulain, and A. Delacourt, “Electrophysiological effects of 25-35 amyloid-β-protein on guinea-pig lateral septal neurons, ”Neurosci. Lett., 5, 111–114 (1993).

    Google Scholar 

  4. P. F. Chapman, G. L. White, M. W. Jones, et al., “Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice,” Nat. Neurosci., 2, 271–276 (1999).

    Google Scholar 

  5. Q.-S. Chen, B. Kagan, Y. Hirakura, and C.-W. Xie, “Impairment of hippocampal long-term potentiation by Alzheimer amyloid β-peptides,” J. Neurosci. Rear-End shunt., 60, 65–72 (2000).

    Google Scholar 

  6. W. K. Cullen, Y.-H. Suh, R. Anwyl, and M. J. Rowan, “Block of LTP in rat hippocampus in vivo by β-amyloid precursor protein fragments,” NeuroReport, 8, 3213–3217 (1997).

    Google Scholar 

  7. S. Delobette, A. Privat, and T. Maurice, “In vitro aggregation facilitates beta-amyloid peptide-(25-35)-induced amnesia in the rat,” Eur. J. Pharmacol., 319, 1–4 (1997).

    Google Scholar 

  8. N. V. Gulyaeva, I. V. Viktorov, M. Yu. Stepanichev, et al., “Intracerebroventricular administration of beta-amyloid peptide (25-35) induces oxidative stress and neurodegeneration in rats brain,” in: Progress in Alzheimer's and Parkinson's Disease, A. Fisher et al. (eds.), Plenum Press, New York (1998), pp. 89–98.

    Google Scholar 

  9. C. Holsher, “β-amyloid induced reduction in synaptic transmission is reversed by inhibitors of nitric oxide synthase,” NeuroReport, 9, 1245–1248 (1998).

    Google Scholar 

  10. N. Kowall, A. McKee, B. Yankner, and M. Beal, “In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25-35) fragment,” Neurobiol. Aging., 13, 537–542 (1992).

    Google Scholar 

  11. V. Markevich, A. M. Scorsa, G. S. Dawe, and J. D. Stephenson, “Cholinergic facilitation and inhibition of long-term potentiation of CA1 pyramidal cells in the hippocampus of urethane-anaesthetized rats,” Brain Res., 754, 95–102 (1997).

    Google Scholar 

  12. M. P. Mattson, “Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity,” Trends. Neurosci., 21, 53–57 (1998).

    Google Scholar 

  13. T. Maurice, B. Lockhart, and A. Privat, “Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction,” Brain Res., 706, 181–189 (1996).

    Google Scholar 

  14. M. P. McDonald and J. B. Overmier, “Present imperfect: A critical review of animal models of the mnemonic impairments in Alzheimer's disease,” Neurosci. Biobehav. Rev., 22, 99–120 (1998).

    Google Scholar 

  15. J. Nalbantoglu, G. Tirado-Santiago, A. Lahsaini, et al., “Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein,” Nature, 387, 500–505 (1997).

    Google Scholar 

  16. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York, London.

  17. M. Yu. Stepanichev, M. Yu. Onufriev, O. S. Mitrokhina, et al., “Neurochemical, behavioral, and neuromorphological effects of central administration of beta-amyloid peptide (25-35) in rat,” Neirokhimiya, 17, 291–306 (2000).

    Google Scholar 

  18. W. Sweeney, J. Luedtke, M. P. McDonald, and J. B. Overmier, “Intrahippocampal β-amyloid impairs win-shift radial maze performance in rats,” Neurobiol. Learn. Memory, 68, 97–101 (1997).

    Google Scholar 

  19. R. D. Terry, E. Masliah, and L. A. Hansen, “Structural basis of cognitive alterations in Alzheimer's disease,” in: Alzheimer Disease, R. D. Terry, R. Katzman, and N. Bick (eds.), Raven Press, New York (1994), pp. 179–196.

    Google Scholar 

  20. J. Wu, R. Anwyl, and M. J. Rowan, “β-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus,” NeuroReport, 6, 2409–2413 (1995).

    Google Scholar 

  21. J. Wu, R. Anwyl, and M. J. Rowan, “Beta-amyloid (1-0-40) increases long-term potentiation in rat hippocampus in vitro,” Eur. J. Pharmacol., 284, 1–3 (1995).

    Google Scholar 

  22. O. Yermolaeva, N. Brot, H. Weissback, et al., “Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling,” Proc. Natl. Acad. Sci. USA, 97, 448–453 (2000).

    Google Scholar 

  23. S. Yan, X. Chen, J. Fu, et al., “RAGE and amyloid β-peptide neurotoxicity in Alzheimer's disease,” Nature, 382, 685–691 (1996).

    Google Scholar 

  24. B. Yankner, L. Duffy, and D. Kirshner, “Neurotropic and neurotoxic effects of amyloid β protein: Reversal by tachykinin neuropeptides,” Science, 250, 279–282 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubetskaya, V.V., Stepanichev, M.Y., Onufriev, M.V. et al. Administration of Aggregated Beta-Amyloid Peptide (25–35) Induces Changes in Long-Term Potentiation in the Hippocampus in Vivo. Neurosci Behav Physiol 33, 95–98 (2003). https://doi.org/10.1023/A:1021761310435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021761310435

Keywords

Navigation