Skip to main content
Log in

Analysis and Estimation of Natural Processes with Nonhomogeneous Spatial Variation Using Secondary Information

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Natural processes encountered in mining, hydrogeologic, environmental, etc. applications usually are poorly known because of scarcity of data over the area of interest. Therefore, stochastic estimation techniques are the tool of choice for a careful accounting of the heterogeneity and uncertainty involved. Within such a framework, a better utilization of all available data concerning the process of interest and all other natural processes related to it, is of primary importance. Because many natural processes show complicated spatial trends, the hypothesis of spatial homogeneity cannot be invoked always, and the more general theory of intrinsic spatial random fields should be employed. Efficient use of secondary information in terms of the intrinsic model requires that suitable permissibility criteria for the generalized covariances and cross-covariances are satisfied. A set of permissibility criteria are presented for the situation of two intrinsic random fields. These criteria are more general and comprehensive than the ones currently available in the geostatistical literature. A constrained least-square technique is implemented for the inference of the generalized covariance and cross-covariance parameters, and a synthetic example is used to illustrate the methodology. The numerical results show that the use of secondary information can lead to significant reductions in the estimation errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahmed, S., and de Marsily, G. 1987, Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity: Water Resource Res., v. 23,no. 9, p. 1717–1737.

    Google Scholar 

  • Cassiani, G., 1995, Criteria of permissibility for generalized cross-covariances and intrinsic cokriging: Stochastic Research Group, Research Rept. No. SM/5.95, Dept. of Environmental Sci. and Engin., Univ. North Carolina, Chapel Hill, North Carolina, 35 p.

    Google Scholar 

  • Chiles, J. P., and Guiller, A., 1984, Variogrammes et krigeages pour la gravimetrie et le magnetisme: Sciences de la Terre, Serie Informatique, v. 20, p. 455–468.

    Google Scholar 

  • Christakos, G., 1984, On the problem of permissible covariance and variogram models: Water Resources Res., v. 20,no. 2, p. 251–265.

    Google Scholar 

  • Christakos, G., 1992, Random field models in earth sciences: Academic Press, San Diego, California, 474 p.

    Google Scholar 

  • Christakos, G., 1997, An analysis of the disease/exposure association using a vector random field model: submitted to Jour. Exposure Analysis & Environmental Epidemiology.

  • Christakos, G., and Hristopulos, D. T., 1998, Tractatus stochasticus: the study of spatiotemporal environmental and health processes. Kluwer Academic Publishers, Dordrecht, the Netherlands, forthcoming.

    Google Scholar 

  • Christakos, G., and Raghu, R., 1996, Dynamic stochastic estimation of physical variables: Math. Geology, v. 28,no. 3, p. 341–365.

    Google Scholar 

  • Christakos, G., and Thesing, G. A., 1993, The intrinsic random field model and its application in the study of sulfate deposition data: Atmospheric Environment, v. 27A,no. 10, p. 1521–1540.

    Google Scholar 

  • Cressie, N., 1991, Statistics for spatial data: John Wiley & Sons, New York, 900 p.

    Google Scholar 

  • Delfiner, P., 1976, Linear estimation of nonstationary spatial phenomena, in Guarascio M., and others, eds., Adv. Geostatistics in the Mining Industry: D. Reidel Publ. Co., Dordrecht, The Netherlands, p. 9–68.

    Google Scholar 

  • Delhomme, J. P., 1978, Kriging in the hydrosciences: Advances in Water Resources, v. 1,no. 5, p. 251–266.

    Google Scholar 

  • Dimitrakopoulos, R., 1990, Conditional simulation of intrinsic random functions of order k: Math. Geology, v. 22,no. 3, p. 361–380.

    Google Scholar 

  • Dowd, P. A., 1989, Generalized cross-covariances, in Armstrong M., ed., Geostatistics: Kluwer Acad. Publ., Amsterdam, The Netherlands, p. 151–162.

    Google Scholar 

  • Dowd, P. A., 1992, A review of recent developments in geostatistics: Computers & Geosciences, v. 17,no. 10, p. 1481–1500.

    Google Scholar 

  • Francois-Bongarcon, D., 1981, Les coregionalisations, le cokrigeage: Publ. n.C-86, Centre de Geostatistique, Ecole des Mines de Paris, Fontainebleau, France, 25 p.

    Google Scholar 

  • Gelfand, I. M., and Vilenkin, N. Y., 1964, Generalized functions-4: Academic Press, New York, 384 p.

    Google Scholar 

  • Goff, J. A., and Jordan, T. H., 1988, Stochastic modelling of seafloor morphology-Inversion of sea beam data for second-order statistics: Jour. Geophys. Res., v. 93,no. B11, p. 13,589–13,608.

    Google Scholar 

  • Goulard, M., and Voltz, M. 1992, Linear coregionalization model: tools for estimation and choice of cross-variogram matrix: Math. Geology, v. 24,no. 3, p. 269–286.

    Google Scholar 

  • Haas, T. C. 1990, Kriging and automated variogram modelling within a moving window: Atmospheric Environment, v. 24A,no. 7, p. 1759–1769.

    Google Scholar 

  • Haining, R., 1990, Spatial data analysis in the social and environmental sciences: Cambridge Univ. Press, Cambridge, 409 p.

    Google Scholar 

  • Journel, A. G., and Huijbregts, Ch., 1978, Mining geostatistics: Academic Press, New York, 600 p.

    Google Scholar 

  • Kitanidis, P. K., 1983, Statistical estimation of polynomial generalized covariance functions and hydrologic applications: Water Resources Res., 19,no. 4, p. 909–921.

    Google Scholar 

  • Kunsch, H. R., Papritz, A., and Bassi, F., 1996, Generalized cross-covariances and their estimation. Res. Rept. no. 77, Seminar fur Statistik, Eidgenossische Technische Hochschule, Zurich, Switzerland, 18 p.

  • Matheron, G., 1971, The theory of regionalized variables and its applications: Fascicule 5, Les Cahiers du Centre de Morphologie Mathematique, Ecole des Mines de Paris, Fontainebleau, France, 211 p.

    Google Scholar 

  • Matheron G., 1973, The intrinsic random functions and their applications: Adv. Appl. Prob., v. 5,no. 3, p. 439–468.

    Google Scholar 

  • Myers, D. E., 1982, Matrix formulation of co-kriging: Math. Geology, v. 14,no. 3, 249–257.

    Google Scholar 

  • Neuman, S. P., 1982, Statistical characterization of aquifer heterogeneities-an overview, in Recent Trends in Hydrogeology: Geol. Soc. America, Spec. Paper, v. 189, p. 81–102.

  • Olea, R., 1972, Application of regionalized variable theory to automatic contouring: Kansas Geol. Survey, Lawrence, Kansas, 191 p.

    Google Scholar 

  • SANLIB, 1995, Stochastic analysis software library and user's guide: Stochastic Research Group, Research Rept. No. SM/1.95, Dept. of Environmental Sci. and Engin., Univ. North Carolina, Chapel Hill, North Carolina.

    Google Scholar 

  • Starks, T. H., and Fang, J. H., 1982, On the estimation of the generalized covariance function: Math. Geology, v. 14,no. 1, p. 57–64.

    Google Scholar 

  • Stein, A., van Eijnsbergen, A. C., and Barendregt, L. G., 1991, Cokriging nonstationary data: Math. Geology, v. 23,no. 5, p. 703–719.

    Google Scholar 

  • Wackernagel, H., 1995, Multivariate geostatistics: Springer, New York, 250 p.

    Google Scholar 

  • Webster, R., 1985, Quantitative spatial analysis of soil in the field: Advances in Soil Science, v. 3, p. 1–70.

    Google Scholar 

  • Yaglom, A. M., 1986, Correlation theory of stationary and related random functions: basic results: Springer-Verlag, New York, 526 p.

    Google Scholar 

  • Yaglom, A. M., and Pinsker, M. S., 1953, Random processes with stationary increments of order n: Dokl. Acad. Nauk USSR, v. 90, p. 731–734.

    Google Scholar 

  • Zimmerman, D. A., and Wilson, J. L., 1990, Description of and user's manual for TUBA: a computer code for generating two-dimensional random fields via the turning band method: SEASOFT, Albuquerque, New Mexico, 116 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassiani, G., Christakos, G. Analysis and Estimation of Natural Processes with Nonhomogeneous Spatial Variation Using Secondary Information. Mathematical Geology 30, 57–76 (1998). https://doi.org/10.1023/A:1021761305044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021761305044

Navigation