Skip to main content
Log in

Predictive Capabilities of an Improved Cubic k–ε Model for Inert Steady Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Through an improved ε transport equation, a major quality enhancement of the cubic k–ε model, earlier developed in[13], is obtained. The ε-equation of [13],yielding good results for wall-bounded and rotating flows, is combined with the one derived by Shih et al. [20], which produces good results for free shear flows (e.g. the plane jet–round jet anomaly is resolved).Results are presented for the following flows: fully developed stationary and rotating channel and pipe, backward-facing step, sudden pipe expansion, smooth channel expansion and contraction, plane and round jet. Heat transfer predictions in turbulent impinging jets are also discussed. Accurate results are obtained for the mean flow quantities for all test cases, without case dependent model tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardina, J., Ferziger, J.H. and Rogallo, R.S., Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154 (1985) 321-336.

    Article  ADS  Google Scholar 

  2. Baughn, J., Hechanova, A. and Yan, X., An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. J. Heat Transfer 113 (1991) 1023-1025.

    Article  Google Scholar 

  3. Behnia, M., Parneix, S. and Durbin, P., Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate. Internat. J. Heat Mass Transfer 41(12) (1998) 1845-1855.

    Article  Google Scholar 

  4. Cooper, D., Jackson, D., Launder, B. and Liao, G., Impinging jet studies for turbulence model assessment-I. Flow field experiments. Internat. J. Heat Mass Transfer 36(10) (1993) 2675-2684.

    Article  Google Scholar 

  5. Craft, T., Iacovides, H. and Yoon, J., Progress in the use of non-linear two-equation models in the computation of convective heat-transfer in impinging and separated flows. Flow, Turbul. Combustion 63 (2000) 59-80.

    Article  MATH  Google Scholar 

  6. Gutmark, E. and Wygnanski, I., The planar turbulent jet. J. Fluid Mech. 73(3) (1976) 465-495.

    Article  ADS  Google Scholar 

  7. Imao, S., Itoh, M. and Harada, T., Turbulent characteristics of the flow in an axially rotating pipe. Internat. J. Heat Fluid Flow 17 (1996) 444-451.

    Article  Google Scholar 

  8. Jang, Y., Temmerman, L. and Leschziner, M., Investigation of anisotropy-resolving turbulence models by reference to highly-resolved LES data for separated flow. In: Proceedings of the ECCOMAS CFD Conference. IMA (2001) CD-ROM Proceedings, 20 pp.

  9. Kim, J., Moin, P. and Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177 (1987) 133-166.

    Article  MATH  ADS  Google Scholar 

  10. Kristoffersen, R. and Andersson, H., Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256 (1993) 163-197.

    Article  MATH  ADS  Google Scholar 

  11. Le, H., Moin, P. and Kim, J., Direct numerical simulation of turbulent flow over a backwardfacing step. J. Fluid Mech. 330 (1997) 349-374.

    Article  MATH  ADS  Google Scholar 

  12. Lytle, D. and Webb, B., Air jet impingement heat transfer at low nozzle-plate spaces. Internat. J. Heat Mass Transfer 37(12) (1994) 1687-1697.

    Article  Google Scholar 

  13. Merci, B., De Langhe, C., Vierendeels, J. and Dick, E., A quasi-realizable cubic low-Reynolds eddy-viscosity turbulence model with a new dissipation rate equation. Flow, Turbul. Combustion 66(2) (2001) 133-157.

    Article  MATH  Google Scholar 

  14. Merci, B., De Langhe, C. and Dick, E., Simulation of a periodic 2D hill flow with k-ɛ models. J. Fluids Engrg. (in press).

  15. Merci, B. and Dick, E., Heat transfer predictions with a cubic k-ɛ model for axisymmetric turbulent jets impinging onto a flat plate. Internat. J. Heat Mass Transfer (in press).

  16. Merci, B., Dick, E., Vierendeels, J. and De Langhe, C., Determination of ɛ at inlet boundaries, Internat. J. Numer. Methods Heat Fluid Flow 12(1) (2002) 65-80.

    Article  MATH  Google Scholar 

  17. Merci, B., Steelant, J., Vierendeels, J., Riemslagh, K. and Dick, E., Computational treatment of source terms in two-equation turbulence models. AIAA J. 38(11) (2000) 2085-2093.

    ADS  Google Scholar 

  18. Panchapakesan, N. and Lumley, J., Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246 (1993) 197-223.

    Article  ADS  Google Scholar 

  19. Robinson, D. and Hassan, H., Further development of the k-ζ (enstrophy) turbulence closure model. AIAA J. 36(10) (1998) 1825-1833.

    ADS  Google Scholar 

  20. Shih, T.H., Liou, W.W., Shabbir, A.A., Yang, Z. and Zhu, J., A new k-ɛ eddy viscosity model for high Reynolds number turbulent flows. Comput. & Fluids 24(3) (1995) 227-238.

    Article  MATH  Google Scholar 

  21. Shih, T.H., Zhu, J. and Lumley, J.L., A new Reynolds stress algebraic equation model. Comput. Methods Appl. Engrg. 125 (1995) 287-302.

    Article  Google Scholar 

  22. Shih, T.H., Zhu, J., Liou, W., Chen, K.H., Liu, N.S. and Lumley, J.L., Modelling of turbulent swirling flows. NASA TM 113112, ICOMP-97-08, CMOTT-97-03 (1997).

  23. Speziale, C., A consistency condition for non-linear algebraic Reynolds stress models in turbulence. Internat. J. Non-Linear Mech. 33(4) (1998) 579-584.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Speziale, C., Younis, B. and Berger, S., Analysis and modelling of turbulent flow in an axially rotating pipe. J. Fluid Mech. 407 (2000) 1-26.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Speziale, C., Younis, B., Rubinstein, R. and Zhou, Y., On consistency conditions for rotating turbulent flows. Phys. Fluids 10(8) (1998) 2108-2110.

    Article  ADS  Google Scholar 

  26. Vierendeels, J., Merci, B. and Dick, E., A blended AUSM+ method for all speeds and all grid aspect ratios. AIAA J. 39(12) (2001) 2278-2282.

    Article  ADS  Google Scholar 

  27. Wagner, C. and Friedrich, R., Turbulent flow in a sudden pipe expansion. In: Benzi, R. (ed.), Advances in Turbulence V. Kluwer Academic Publishers, Dordrecht (1995) pp. 544-548.

    Google Scholar 

  28. Yan, X., A preheated-wall transient method using liquid crystals for the measurement of heat transfer on external surfaces and in ducts. Ph.D. Thesis, University of California, Davis (1993).

  29. Yang, Z. and Shih, T., A new time scale based k-3 model for near-wall turbulence. AIAA J. 31(7) (1993) 1191-1198.

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merci, B., Dick, E. Predictive Capabilities of an Improved Cubic k–ε Model for Inert Steady Flows. Flow, Turbulence and Combustion 68, 335–358 (2002). https://doi.org/10.1023/A:1021754324341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021754324341

Navigation