Skip to main content
Log in

Atomic Stick-Slip Friction Between Commensurate Self-Assembled Monolayers

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations have been used to examine the friction between commensurate self-assembled monolayers (SAMs) on Au (111). The discrepancy between sawtoothed friction force and the discontinuous molecular movements reveals the complex dynamics of the closed-packing chains under shearing. Molecules in the lower monolayer can be divided into two groups with a phase difference of π. The periodic motion of the molecules is not synchronous with the frictional stick-slip loops, which result in a second-order valley in friction curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Singer and H. M. Pollock (eds.) Fundamentals of Friction: Macroscopic and Microscopic Processes (Kluwer Academic Publishers, Dordrecht, 1992).

    Google Scholar 

  2. B. N. J. Persson and E. Tosatti (eds.) Physics of Sliding Friction (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  3. M. O. Robbins and M. H. Muser, in: Handbook of Modern Tri-bology, ed. B. Bhushan CRC Press, 2000).

  4. G. M. McClelland and J. N. Glosli, Friction at the Atomic Scale. (1992) p. 405.

  5. S. Aubry, Physica D 7 (1983) 240.

    Google Scholar 

  6. P. Bak, Rep. Progr. Phys. 45 (1982) 587.

    Google Scholar 

  7. C. M. Mate, G. M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59 (1987) 1942.

    Google Scholar 

  8. S. Morita, S. Fujisawa and Y. Sugawara, Surf. Sci. Rep. 23 (1996) 1.

    Google Scholar 

  9. D. Tomanek, W. Zhong and H. Thomas, Europhys. Lett. 15 (1991) 887.

    Google Scholar 

  10. T. Gyalog, M. Bammerlin, R. Luthi, E. Meyer and H. Thomas, Europhys. Lett. 31 (1995) 269.

    Google Scholar 

  11. J. Krim, D. H. Solina and R. Chiarello, Phys. Rev. Lett. 66 (1991) 181.

    Google Scholar 

  12. M. Cieplak, E. D. Smith and M. O. Robbins, Science 265 (1994) 1209.

    Google Scholar 

  13. M. O. Robbins and J. Krim, MRS Bull. 23 (1998) 23 andref. therein.

    Google Scholar 

  14. B. N. J. Persson, Phys. Rev. B 48 (1993) 18140.

    Google Scholar 

  15. M. R. Sorensen, K. W. Jacobsen and P. Stoltze, Phys. Rev. B 53 (1996) 2101.

    Google Scholar 

  16. J. A. Harrison and S. S. Perry, MRS Bull. 23 (1998) 27and ref. therein.

    Google Scholar 

  17. G. He, M. H. Muser and M. O. Robbins, Science 284 (1999) 1650.

    Google Scholar 

  18. G. He and M. O. Robbins, Tribol. Lett. 10 (2001) 7.

    Google Scholar 

  19. M. D. Perry and J. A. Harrison, J. Phys. Chem. B 101 (1997) 1364.

    Google Scholar 

  20. A. Ulman, An Introduction to Ultrathin Organic Films (Academic Press, Boston, 1991).

    Google Scholar 

  21. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton and C. M. Lieber, Science, 265 (1994) 2071.

    Google Scholar 

  22. X. D. Xiao, G. Y. Liu, D. H. Charych and M. Salmeron, Langmuir 12 (1996) 235.

    Google Scholar 

  23. E. Barrena, S. Kopta, D. F. Ogletree, D. H. Charych and M. Salmeron, Phys. Rev. Lett. 82 (1999) 2880.

    Google Scholar 

  24. J. N. Glosli and G. M. McClelland, Phys. Rev. Lett. 70 (1993) 1960.

    Google Scholar 

  25. T. Ohzono, J. N. Glosli and M. Fujihira, Jpn. J. Appl. Phys. 37 (1998) 6335.

    Google Scholar 

  26. M. Fujihira and T. Ohzono, Jpn. J. Appl. Phys. 38 (1999) 3918.

    Google Scholar 

  27. A. Koike and M. Yoneya, J. Chem. Phys. 105 (1996) 6060.

    Google Scholar 

  28. K. J. Tupper, and D. W. Brenner, Thin Solid Films, 253 (1994) 185.

    Google Scholar 

  29. J. Hautman and M. L. Klein, J. Chem. Phys. 91 (1989) 4994.

    Google Scholar 

  30. U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, Science 248 (1990) 454.

    Google Scholar 

  31. The lattice constant of gold (111) is a = 2. 884 Å, and the NN distance of monolayers is √ 3a = 5 Å. In one stick-slip segment, the relative displacement between tail groups of opposite monolayers in the x direction is √ 3a/2 either of them taking half, namely √3a/4. In figure 4(a) the distance between adjacent MPs (R and F) of head groups in the x direction is √3a/6 which is 2/3 of the displacement of trail groups in one segment.

  32. E. Barrena, C. Ocal and M. Salmeron, J. Chem. Phys. 113 (2001) 2413

    Google Scholar 

  33. E. Barrena, C. Ocal and M. Salmeron, J. Chem. Phys. 114 (2001) 4210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Wang, H. & Hu, Y. Atomic Stick-Slip Friction Between Commensurate Self-Assembled Monolayers. Tribology Letters 14, 69–76 (2003). https://doi.org/10.1023/A:1021743901788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021743901788

Navigation