Metal-Clad Multilayer Waveguide: Circle-Chain Convergent Method and Two Perturbation Methods

  • M. M. Shabat
  • M. A. Abd-El naby
  • N. M. Barakat
  • D. Jäger


Computer modeling studies for the calculation of the propagation constants and attenuation coefficients of TE mode in an asymmetric metal/ dielectric/dielectric layers structure are presented. Two different perturbation methods, circle chain convergent method and Downhill method are used. The last two methods can be used easily for the waveguides consist of any number of layers with complex refractive index due to gain and loss. The developed programs were run on a personal computer and numerical results are presented.


Attenuation Refractive Index Computer Modeling Personal Computer Layer Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. X. She, Metal-Clad Multilayer Dielectric Waveguide: Accurate Perturbation Analysis, J. Opt. Soc. Amer. A, vol. 7, no. 9, pp. 1582–1590, 1990.Google Scholar
  2. 2.
    S.X. She, Characteristics Analysis of Metal-Clad and Absorptive Dielectric Waveguides by a Simple and Accurate Perturbation Method, Opt. Quantum Electron., vol. 23, pp. 1045–1054, 1991.Google Scholar
  3. 3.
    L. Sun and M.E. Marhic, Numerical Study of Attenuation in Multilayer Infrared Waveguides by The Circle-Chain Convergent Method, J. Opt. Soc. Amer. A, vol. 8, pp. 478–483, 1991.Google Scholar
  4. 4.
    H. Bach, On The Downhill Method, Commun. Ass, Comput., Mach., vol. 12, pp. 675–677, 1969.Google Scholar
  5. 5.
    K.H. Schlereth and M. Tacke, The Complex propagation Constant of Multilayer Waveguides: An Algorithm for a Personal Computer, IEEE Jornal of Quantum Electron., vol. 26, no. 4, pp. 627–630, 1990.Google Scholar
  6. 6.
    L.V. Ahlfore, Complex Analysis, 2nd ed. McGraw-Hill, New York, 1966.Google Scholar
  7. 7.
    R.V. Churchill and J.W. Brown, Complex Variable and Applications, McGraw-Hill, New York, 1984.Google Scholar
  8. 8.
    C. Ma and S. Liu, Optical Characteristics Analysis and TE Mode Selection for Asymmetric Metal-Clad Waveguide, Opt. Quantum Electron., vol. 20, pp. 323–328, 1988.Google Scholar
  9. 9.
    NAG FORTRAN Library Manual Mark 6, Numerical Algorithm Group, Downers, Group, III, 1977.Google Scholar
  10. 10.
    IMSL Library Reference Manual, 7th ed. International Mathematical Libraries, Houston, Tex, 1979.Google Scholar
  11. 11.
    F. Tokdemir, Programing with Fortran 77, Middle East Technical University, 1990.Google Scholar
  12. 12.
    MINPACK Documenucation Applide Mathematical Division Argonne National Library, Argonne, III, 1979.Google Scholar
  13. 13.
    S. D. Cont, and C. D. Boor, Elementary Numerical Analysis, McGraw-HILL kogakusha, Ltd, 1972.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • M. M. Shabat
    • 1
  • M. A. Abd-El naby
    • 2
  • N. M. Barakat
    • 3
  • D. Jäger
    • 1
  1. 1.Center of Semiconductor and Optoelectronics ZHO, Faculty of Electrical Engineering and ElectronicsGerhard-Mercator UniversityDuisburgGermany.
  2. 2.Department of PhysicsIslamic University of GazaGaza StripPalestinian Authority
  3. 3.College of Education, GazaGaza StripPalestinian Authority

Personalised recommendations