Skip to main content
Log in

Symmetries in finite order variational sequences

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We refer to Krupka's variational sequence, i.e. the quotient of the de Rham sequence on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among the morphisms of the variational sequence there are the Euler-Lagrange operator and the Helmholtz operator.

In this note we show that the Lie derivative operator passes to the quotient in the variational sequence. Then we define the variational Lie derivative as an operator on the sheaves of the variational sequence. Explicit representations of this operator give us some abstract versions of Noether's theorems, which can be interpreted in terms of conserved currents for Lagrangians and Euler-Lagrange morphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Anderson and T. Duchamp: On the existence of global variational principles. Amer. Math. J. 102 (1980), 781–868.

    Google Scholar 

  2. L. Fatibene, M. Francaviglia and M. Palese: Conservation laws and variational sequences in gauge-natural theories. Math. Proc. Cambridge Phil. Soc. 130 (2001), 555–569.

    Google Scholar 

  3. M. Ferraris: Fibered connections and global Poincaré-Cartan forms in higher-order calculus of variations. Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1983) (D. Krupka, ed.). J. E. Purkyně University, Brno, 1984, pp. 61–91.

    Google Scholar 

  4. M. Ferraris and M. Francaviglia: The Lagrangian approach to conserved quantities in general relativity. Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia, ed.). Elsevier Science Publishers B. V., Amsterdam, 1991, pp. 451–488.

    Google Scholar 

  5. M. Francaviglia, M. Palese and R. Vitolo: Superpotentials in variational sequences. Proc. VII Conf. Diff. Geom. and Appl., Satellite Conf. of ICM in Berlin (Brno 1998) (I. Kolář et al., eds.). Masaryk University, Brno, 1999, pp. 469–480.

    Google Scholar 

  6. P. L. Garcia and J. Muñoz: On the geometrical structure of higher order variational calculus. Proc. IUTAM-ISIMMSymp. on Modern Developments in Anal. Mech. (Torino, 1982) (S. Benenti, M. Francaviglia and A. Lichnerowicz, eds.). Tecnoprint, Bologna, 1983, pp. 127–147.

    Google Scholar 

  7. I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, New York, 1993.

    Google Scholar 

  8. I. Kolář: Lie derivatives and higher order Lagrangians. Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1980) (O. Kowalski, ed.). Univerzita Karlova, Praha, 1981, pp. 117–123.

    Google Scholar 

  9. I. Kolář: A geometrical version of the higher order hamilton formalism in fibred manifolds. J. Geom. Phys. 1 (1984), 127–137.

    Google Scholar 

  10. D. Krupka: Some geometric aspects of variational problems in fibred manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14, J. E. Purkyně Univ., Brno (1973), 1–65.

    Google Scholar 

  11. D. Krupka: Variational sequences on finite order jet spaces. Proc. Diff. Geom. and its Appl. (Brno, Czech Republic, 1989) (J. Janyška, D. Krupka, eds.). World Scientific, Singapore, 1990, pp. 236–254.

    Google Scholar 

  12. D. Krupka: Topics in the calculus of variations: Finite order variational sequences. Proc. Diff. Geom. and its Appl. Opava, 1993, pp. 473-495.

  13. D. Krupka and A. Trautman: General invariance of Lagrangian structures. Bull. Acad. Polon. Sci., Math. Astr. Phys. 22 (1974), 207–211.

    Google Scholar 

  14. L. Mangiarotti and M. Modugno: Fibered spaces, jet spaces and connections for field theories. Proc. Int. Meet. on Geom. and Phys.. Pitagora Editrice, Bologna, 1983, pp. 135–165.

    Google Scholar 

  15. J. Novotný: Modern methods of differential geometry and the conservation laws problem;. Folia Fac. Sci. Nat. UJEP Brunensis (Physica) 19 (1974), 1–55.

    Google Scholar 

  16. D. J. Saunders: The Geometry of Jet Bundles. Cambridge Univ. Press, Cambridge, 1989.

    Google Scholar 

  17. F. Takens: A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14 (1979), 543–562.

    Google Scholar 

  18. A. Trautman: Noether equations and conservation laws. Comm. Math. Phys. 6 (1967), 248–261.

    Google Scholar 

  19. A. Trautman: A metaphysical remark on variational principles. Acta Phys. Pol. B 27 (1996), 839–848.

    Google Scholar 

  20. W. M. Tulczyjew: The Lagrange complex. Bull. Soc. Math. France 105 (1977), 419–431.

    Google Scholar 

  21. A. M. Vinogradov: On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977), 1200–1204.

    Google Scholar 

  22. A. M. Vinogradov: A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19 (1978), 144–148.

    Google Scholar 

  23. R. Vitolo: On different geometric formulations of Lagrangian formalism. Diff. Geom. and its Appl. 10 (1999), 225–255.

    Google Scholar 

  24. R. Vitolo: Finite order Lagrangian bicomplexes. Math. Proc. Cambridge Phil. Soc. 125 (1998), 321–333.

    Google Scholar 

  25. R. Vitolo: A new infinite order formulation of variational sequences. Arch. Math. Univ. Brunensis 34 (1998), 483–504.

    Google Scholar 

  26. R. O. Wells: Differential Analysis on Complex Manifolds (GTM, n. 65). Springer-Verlag, Berlin, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francaviglia, M., Palese, M. & Vitolo, R. Symmetries in finite order variational sequences. Czechoslovak Mathematical Journal 52, 197–213 (2002). https://doi.org/10.1023/A:1021735824163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021735824163

Navigation