Skip to main content
Log in

Cobalt(II) Oxide Solubility and Phase Stability in Alkaline Media at Elevated Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of cobalt(II) oxide (CoO) in deoxygenated ammonium and sodium hydroxide solutions between 22 and 288°C. Co(II) ion activity in aqueous solution was controlled by a hydrous Co(II) oxide when nitrogen was used for deoxygenation and by metallic cobalt when hydrogen was used. Measured cobalt solubilities are interpreted using a Co(II) ion hydroxo- and amminocomplexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A common set of thermodynamic properties for the species Co(OH)+, Co(OH)2(aq) and Co(OH)(NH3)+ is provided to permit accurate cobalt oxide solubility calculations over broad ranges of temperature and alkalinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. H. Lister, in Water Chemistry of Nuclear Reactor Systems 6, Vol. 2 (British Nuclear Energy Society, London 1992), p. 49.

    Google Scholar 

  2. W. Feitknecht and P. Schindler, Pure Appl. Chem. 6, 130 (1963).

    Google Scholar 

  3. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, (Wiley, New York, 1976).

    Google Scholar 

  4. S. E. Ziemniak, J. Solution Chem. 21, 745 (1992).

    Google Scholar 

  5. O. I. Martynova, E. I. Mingulina, O. K. Smirnov, and I. S. Kurtova, Izv. Akad. Nauk SSSR Energy Transport 5, 148 (1971).

    Google Scholar 

  6. K. Dinov, C. Matsuura, D. Hiroishi, and K. Ishigure, J. Nucl. Sci. Eng. 113, 207 (1993).

    Google Scholar 

  7. G. Giasson and P. H. Tewari, Can. J. Chem. 56, 435 (1978).

    Google Scholar 

  8. B. Basavalingu, J. A. R. Tareen, and G. T. Bhandge, J. Mater. Sci. Lett. 5, 1227 (1986).

    Google Scholar 

  9. T. Mukaibo, S. Masukawa, M. Maeda, and M. Hoshido, Denki Kagaku 34, 388 (1966).

    Google Scholar 

  10. I. Barin, Thermochemical Data of Pure Substances, (VCH Verlagsgesellschaft, Weinheim, 1989).

    Google Scholar 

  11. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data 11,Suppl. 2 (1982).

    Google Scholar 

  12. L. W. F. T. Pistorius, Z. Phys. Chem. [N. F.] 34, 287 (1962).

    Google Scholar 

  13. D. M. Alexander, D. J. T. Hill, and L. R. White, Aust. J. Chem. 24, 1143 (1971).

    Google Scholar 

  14. S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 24, 837 (1995).

    Google Scholar 

  15. S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 18, 1133 (1989).

    Google Scholar 

  16. S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 27, 33 (1998).

    Google Scholar 

  17. N. S. McIntyre and M. G. Cook, Anal. Chem. 47, 2208 (1975).

    Google Scholar 

  18. N. S. McIntyre, D. D. Johnston, L. L. Coatsworth, R. D. Davidson, and J. R. Brown, Surface Interface Anal. 15, 265 (1990).

    Google Scholar 

  19. T. J. Chuang, C. R. Brundle, and K. Wandelt, Thin Solid Films, 53, 19 (1978).

    Google Scholar 

  20. O. Gübeli, J. Herbert, R. Taillon, and P. A. Cote, Helv. Chim. Acta 53, 1229 (1970).

    Google Scholar 

  21. R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes, J. Solution Chem. 21, 699 (1988).

    Google Scholar 

  22. F. H. Sweeton, R. E. Mesmer, and C. F. Baes, J. Solution Chem. 3, 191 (1974).

    Google Scholar 

  23. B. F. Hitch and R. E. Mesmer, J. Solution Chem. 5, 667 (1976).

    Google Scholar 

  24. L. O. Gilpatrick and H. H. Stone, Oak Ridge National Laboratory Rep ORNL-3127 (1961) and ORNL-3262 (1962).

  25. W. L. Marshall, R. Slusher, and E. V. Jones, J. Chem Eng. Data 9, 187 (1964).

    Google Scholar 

  26. W. L. Marshall and E. V. Jones, J. Phys. Chem. 20, 4028 (1966).

    Google Scholar 

  27. D. L. Marquardt, J. Soc. Ind. Appl. Math. 2, 431 (1963).

    Google Scholar 

  28. J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Helper, J. Phys. Chem. 72, 2902 (1968).

    Google Scholar 

  29. M. H. Abraham and Y. Marcus, J. Chem. Soc. Faraday Trans. I, 82, 3255 (1986).

    Google Scholar 

  30. C. M. Criss and J. W. Cobble, J. Amer. Chem. Soc. 86, 5390 (1964).

    Google Scholar 

  31. K. H. Gayer and A. B. Garrett, J. Amer. Chem. Soc. 72, 3921 (1950).

    Google Scholar 

  32. S. Gordon and J. M. Schreyer, Chem. Anal. 44, 95 (1955).

    Google Scholar 

  33. B. B. Ezhoy and A. A. Kamnev, Zh. Prikl. Khim. 54, 2346 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemniak, S.E., Goyette, M.A. & Combs, K.E.S. Cobalt(II) Oxide Solubility and Phase Stability in Alkaline Media at Elevated Temperatures. Journal of Solution Chemistry 28, 809–836 (1999). https://doi.org/10.1023/A:1021728113762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021728113762

Navigation