Skip to main content
Log in

Waves behind a Step in an Open Channel

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The paper presents experimental data on flow in the vicinity of a sudden elevation of channel bottom (step). The range of external flow parameters is considered for the case where the step generates waves. A distinguishing feature of these waves is that they are formed in transition from subcritical to supercritical flow. It is shown that there is a range of external parameters in which the depth at the channel exit, the depth above the step, and the distance from the step to the first wave trough depend exclusively on flow discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. E. Dreisler, “Comparison of theories and experiments for the hydraulic dam-break wave,” Int. Assoc. Sci. Hydrology, No. 38, 319-328 (1954).

    Google Scholar 

  2. J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Intersciense Publishers, New York-London (1957).

    Google Scholar 

  3. H. Favre, Ondes de Translation dans les Canaux Decoverts, Dunod, Paris (1935).

    Google Scholar 

  4. V. I. Bukreev and A. V. Gusev, “Waves ahead of a vertical plate in a channel,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 82-90 (1999).

    Google Scholar 

  5. V. V. Smyslov, Theory of Spillway with a Wide Sill [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1956).

    Google Scholar 

  6. R. K.-C. Chan and R. L. Street, “A computer study ofinite amplitude water waves,” J. Comput. Phys., 6, 68-94 (1970).

    Google Scholar 

  7. V. Yu. Lyapidevskii and V. M. Teshukov, Mathematical Models for Propagation of Long Waves in Inhomogeneous Fluids [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2000).

    Google Scholar 

  8. P. G. Baines, Topographic Effects in Stratifed Flow, Cambridge Univ. Press, Cambridge (1995).

    Google Scholar 

  9. V. I. Bukreev, “Undular jump in open-channel sill overow,” J. Appl. Mech. Tech. Phys., 42, No. 4, 596-602 (2001).

    Google Scholar 

  10. P. G. Kiselyev, Handbook on Hydraulic Calculations [in Russian], Gosénergoizdat, Moscow-Leningrad (1957).

    Google Scholar 

  11. Ven Te Chow, Open-Channel Hydraulics, McGraw Hill Book Co., New York (1959).

    Google Scholar 

  12. S. Wu and N. Rajaratnam, “Impinging jet and surface ow regimes at drop,” J. Hydraul. Res., 36, No. 1, 69-74 (1998).

    Google Scholar 

  13. L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov, et al., Nonlinear Problems of the Theory of Surface and Internal Waves [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  14. V. I. Bukreev, E. M. Romanov, and N. P. Turanov, “Breaking of gravity waves in a neighborhood of their second critical propagation speed,” J. Appl. Mech. Tech. Phys., 39, No. 2, 205-210 (1998).

    Google Scholar 

  15. V. I. Bukreev and V. A. Kostomakha, Sudden blocking of a subcritical open-channel ow,” J. Appl. Mech. Tech. Phys., 42, No. 1, 35-41 (2001).

    Google Scholar 

  16. V. I. Bukreev, “Breaking of gravity waves in the motion of a vertical plate in a two-layer liquid,” J. Appl. Mech. Tech. Phys., 39, No. 5, 659-665 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukreev, V.I., Gusev, A.V. Waves behind a Step in an Open Channel. Journal of Applied Mechanics and Technical Physics 44, 52–58 (2003). https://doi.org/10.1023/A:1021725629052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021725629052

Navigation