Skip to main content
Log in

Optimization of Stability Robustness Bounds for Linear Discrete-Time Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, existing stability robustness measures for the perturbation of both continuous-time and discrete-time systems are reviewed. Optimized robustness bounds for discrete-time systems are derived. These optimized bounds are obtained reducing the conservatism of existing bounds by (a) using the structural information on the perturbation and (b) changing the system coordinates via a properly chosen similarity transformation matrix. Numerical examples are used to illustrate the proposed reduced conservatism bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safonov, M. G., and Athans, M., Gain and Phase Margin for Multiloop LQG Regulators, IEEE Transactions on Automatic Control, Vol. 22, pp. 173–178, 1977.

    Google Scholar 

  2. Doyle, J. C., and Stein, G., Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis, IEEE Transactions on Automatic Control, Vol. 26, pp. 4–16, 1981.

    Google Scholar 

  3. Postlethwaite, I., Edmunds, J. M., and MacFarlane, A. G. J., Principal Gains and Principal Phases in the Analysis of Linear Multivariable Feedback Systems, IEEE Transactions on Automatic Control, Vol. 26, pp. 32–46, 1981.

    Google Scholar 

  4. Safonov, M. G., Laub, A. J., and Hartmann, G. L., Feedback Properties of Multivariable Systems: The Role and Use of the Return Difference Matrix, IEEE Transactions on Automatic Control, Vol. 26, pp. 47–65, 1981.

    Google Scholar 

  5. Lethomaki, N., Sandell, N. R., and Athans, M., Robustness Results in Linear-Quadratic Gaussian-Based Multivariable Control Designs, IEEE Transactions on Automatic Control, Vol. 26, pp. 75–91, 1981.

    Google Scholar 

  6. Davison, E. J., and Ferguson, I. J., The Design of Controllers for the Multivariable Robust Servomechanism Problem Using Parameter Optimization Methods, IEEE Transactions on Automatic Control, Vol. 26, pp. 93–110, 1981.

    Google Scholar 

  7. Moore, B. C., Principal Component analysis in Linear Systems: Controllability, Observability, and Model Reduction, IEEE Transactions on Automatic Control, Vol. 26, pp. 17–32, 1981.

    Google Scholar 

  8. Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B., State-Space Solutions to the Standard H 2 and H -Control Problems, IEEE Transactions on Automatic Control, Vol. 34, pp. 831–847, 1989.

    Google Scholar 

  9. Khargonekar, P. P., Peterson, I. R., and Rotea, M. A., H -Optimal Control with State Feedback, IEEE Transactions on Automatic Control, Vol. 33, pp. 786–788, 1988.

    Google Scholar 

  10. Khargonekar, P. P., Peterson, I. R., and Zhou, K., robust Stabilization of Uncertain Linear Systems: Quadratic, Stabilizability, and H -Control Theory, IEEE Transactions on Automatic Control, Vol. 35, pp. 356–361, 1990.

    Google Scholar 

  11. Patel, R. V., Toda, M., and Sridhar, R., Robustness of Linear Quadratic State Feedback Designs in the Presence of System Uncertainty, IEEE Transactions on Automatic Control, Vol. 22, pp. 945–947, 1977.

    Google Scholar 

  12. Patel, R. V., and Toda, M., Quantitative Measures of Robustness for Multivariable Systems, Proceedings of the Joint Automatic Control Conference, San Francisco, California, Vol. 2, TP8—A, 1980.

  13. Yedavalli, R. K., Improved Measures of Stability Robustness for Multivariable Systems, IEEE Transactions on Automatic Control, Vol. 30, pp. 577–597, 1985.

    Google Scholar 

  14. Yedavalli, R. K., and Liang, Z., Reduced Conservatism in Stability Robustness Bounds by State Transformation, IEEE Transactions on Automatic Control, Vol. 31, pp. 863–866, 1986.

    Google Scholar 

  15. Zhou, K., and Khargonekar, P., Stability Robustness Bounds for Linear State-Space Models with Structured Uncertainty, IEEE Transactions on Automatic Control, Vol. 32, pp. 621–623, 1987.

    Google Scholar 

  16. Yedavalli, R. K., Banda, S. S., and Ridgely, D. B., Time-Domain Stability Robustness Measures for Linear Regulators, Journal of Guidance, Control, and Dynamics, Vol. 8, pp. 520–524, 1985.

    Google Scholar 

  17. Sezer, M. E., and Siljak, D. D., A Note on Robust Stability Bounds, IEEE Transactions on Automatic Control, Vol. 34, pp. 1212–1215, 1989.

    Google Scholar 

  18. Yaz, E., and Niu, X., Stability Robustness of Linear Discrete-Time Systems in the Presence of Uncertainty, International Journal of Control, Vol. 50, pp. 173–182, 1989.

    Google Scholar 

  19. Niu, X., The Robust Design of Discrete-Time Control Systems, MS Thesis, University of Arkansas, 1988.

  20. Yaz, E., Deterministic and Stochastic Robustness Measures for Discrete Systems, IEEE Transactions on Automatic Control, Vol. 33, pp. 952–955, 1988.

    Google Scholar 

  21. Kolla, S. R., Yedavalli, R. K., and Farison, J. B., Robust Stability Bounds on Time-Varying Perturbations for State-Space Models of Linear Discrete-Time Systems, International Journal of Control, Vol. 50, pp. 151–159, 1989.

    Google Scholar 

  22. Yaz, E., Robustness of Discrete-Time Systems in the Presence of Unstructured Stochastic Perturbations, IEEE Transactions on Automatic Control, Vol. 36, pp. 867–869, 1991.

    Google Scholar 

  23. Bernstein, D. S., and Hollot, C. V., Robust Stability for Sampled-Data Control Systems, Systems and Control Letters, Vol. 13, pp. 217–226, 1989.

    Google Scholar 

  24. Farison, J. B., and Kolla, S. R., Techniques in Stability Robustness Bounds for Linear Discrete-Time Systems, Control and Dynamic Systems, Vol. 50, pp. 395–454, 1992.

    Google Scholar 

  25. Wei, K. H., and Yedavalli, R. K., Invariance of Strict Hurwitz Property for Uncertain Polynomials with Dependent Coefficients, IEEE Transactions on Automatic Control, Vol. 32, pp. 907–909, 1987.

    Google Scholar 

  26. Wei, K. H., and Yedavalli, R. K., Robustness Stability for Linear Systems with Both Parameter Variation and Unstructured Uncertainty, IEEE Transactions on Automatic Control, Vol. 34, pp. 149–156, 1989.

    Google Scholar 

  27. Cieslik, J., On Possibilities of the Extension of Kharitonov's Stability Test for Interval Polynomials to the Discrete-Time Case, IEEE Transactions on Automatic Control, Vol. 32, pp. 237–238, 1987.

    Google Scholar 

  28. Niu, X., De Abreu-Garcia, J. A., and Yaz, E., Improved Bounds for Linear Discrete-Time Systems with Structured Perturbations, IEEE Transactions on Automatic Control, Vol. 37, pp. 1170–1173, 1992.

    Google Scholar 

  29. Niu, X., and De Abreau-Garcia, J. A., Some Discrete-Time Counterparts to Robustness Stability Bounds, Proceedings of the American Control Conference, Boston, Massachusetts, Vol. 2, pp. 1947–1948, 1991.

    Google Scholar 

  30. Yaz, E., and Niu, X., New Robustness Bounds for Discrete Systems with Random Perturbations, IEEE Transactions on Automatic Control, Vol. 38, pp. 1866–1870, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Abreu-García, J.A., Niu, X. & Cabrera, L.A. Optimization of Stability Robustness Bounds for Linear Discrete-Time Systems. Journal of Optimization Theory and Applications 99, 303–330 (1998). https://doi.org/10.1023/A:1021718109567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021718109567

Navigation