Skip to main content
Log in

Modular functions on multilattices

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that every modular function on a multilattice L with values in a topological Abelian group generates a uniformity on L which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avallone: Liapunov theorem for modular functions. Internat. J. Theoret. Phys. 34 (1995), 1197–1204.

    Google Scholar 

  2. A. Avallone: Nonatomic vector-valued modular functions. Annal. Soc. Math. Polon Series I: Comment. Math. XXXIX (1999), 37–50.

    Google Scholar 

  3. A. Avallone, G. Barbieri and R. Cilia: Control and separating points of modular functions. Math. Slovaca 43 (1999).

  4. A. Avallone and A. De Simone: Extensions of modular functions on orthomodular lattices. Italian J. Pure Appl. Math. To appear.

  5. A. Avallone and M.A. Lepellere: Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo XLVII (1998), 221–264.

    Google Scholar 

  6. A. Avallone and J. Hamhalter: Extension theorems (vector measures on quantum logics). Czechoslovak Math. J. 46 (121) (1996), 179–192.

    Google Scholar 

  7. A. Avallone and H. Weber: Lattice uniformities generated by filters. J. Math. Anal. Appl. 209 (1997), 507–528.

    Google Scholar 

  8. G. Barbieri and H. Weber: A topological approach to the study of fuzzy measures. Funct. Anal. Econom. Theory. Springer, 1998, pp. 17–46.

  9. G. Barbieri, M.A. Lepellere and H. Weber: The Hahn decomposition theorem and applications. Fuzzy Sets Systems 118 (2001), 519–528.

    Google Scholar 

  10. H. J. Bandelt, M. Van de Vel and E. Verheul: Modular interval spaces. Math. Nachr. 163 (1993), 177–201.

    Google Scholar 

  11. M. Benado: Les ensembles partiellement ordonnes et le theoreme de raffinement de Schrelier II. Czechoslovak Math. J. 5 (1955), 308–344.

    Google Scholar 

  12. G. Birkhoff: Lattice Theory, Third edition. AMS Providence, R.I., 1967.

    Google Scholar 

  13. I. Fleischer and T. Traynor: Equivalence of group-valued measure on an abstract lattice. Bull. Acad. Pol. Sci. 28 (1980), 549–556.

    Google Scholar 

  14. I. Fleischer and T. Traynor: Group-valued modular functions. Algebra Universalis 14 (1982), 287–291.

    Google Scholar 

  15. M. G. Graziano: Uniformities of Fréchet-Nikodým type on Vitali spaces. Semigroup Forum 61 (2000), 91–115.

    Google Scholar 

  16. D. J. Hensen: An axiomatic characterization of multilattices. Discrete Math. 33 (1981), 99–101.

    Google Scholar 

  17. J. Jakubík: Sur les axiomes des multistructures. Czechoslovak Math. J. 6 (1956), 426–430.

    Google Scholar 

  18. J. Jakubík and M. Kolibiar: Isometries of multilattice groups. Czechoslovak Math. J. 33 (1983), 602–612.

    Google Scholar 

  19. J. Lihová: Valuations and distance function on directed multilattices. Math. Slovaca 46 (1996), 143–155.

    Google Scholar 

  20. J. Lihová and K. Repasky: Congruence relations on and varieties of directed multilattices. Math. Slovaca 38 (1988), 105–122.

    Google Scholar 

  21. T. Traynor: Modular functions and their Fréchet-Nikodým topologies. Lectures Notes in Math. 1089 (1984), 171–180.

    Google Scholar 

  22. H. Weber: Uniform Lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II. Ann. Mat. Pura Appl. 160 (1991), 347–370; and 165 (1993), 133–158.

    Google Scholar 

  23. H. Weber: Lattice uniformities and modular functions on orthomodular lattices. Order 12 (1995), 295–305.

    Google Scholar 

  24. H. Weber: On modular functions. Funct. Approx. XXIV (1996), 35–52.

    Google Scholar 

  25. H. Weber: Valuations on complemented lattices. Internat. J. Theoret. Phys. 34 (1995), 1799–1806.

    Google Scholar 

  26. H. Weber: Complemented uniform lattices. Topology Appl. 105 (2000), 47–64.

    Google Scholar 

  27. H. Weber: Two extension theorems. Modular functions on complemented lattices. Preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avallone, A. Modular functions on multilattices. Czechoslovak Mathematical Journal 52, 499–512 (2002). https://doi.org/10.1023/A:1021715427024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021715427024

Navigation