Skip to main content
Log in

Ion-Interaction Approach: Pressure Effect on the Solubility of Some Minerals in Submarine Brines and Seawater

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The pressure dependence of salt solubility in multiple electrolyte solutions was estimated to 1000 atm. The activity coefficients, thermodynamic solubility products, degrees of saturation, and mineral solubility were calculated with high precision only up to 300 atm because of the absence of compressibility data for mixed electrolyte solutions. The ion-interaction approach developed during the last 2 decades allows the prediction of various thermodynamic properties, including volumetric ones for multiple-solute natural solutions. This approach was applied to the estimation of the depth dependence of solubility for certain evaporite minerals in natural brines. The influence of pressure on solubility products, mean activity coefficients, and degrees of saturation of minerals, such as, halite (NaCl), anhydrite (CaSO4), gypsum (CaSO4·2 H2O), celestite (SrSO4), and barite (BaSO4) were calculated for in situ depths in the Orca Basin (Gulf of Mexico), the Tyro and Bannock II depressions (the Mediterranean Sea), and for average seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. S. Krumgalz, R. Pogorelsky, Ya. A. Iosilevskii, A. Weiser, and K. S. Pitzer, J. Solution Chem. 23, 849 (1994).

    Google Scholar 

  2. B. S. Krumgalz, R. Pogorelsky, and K. S. Pitzer, J. Solution Chem. 24, 1025 (1995).

    Google Scholar 

  3. B. S. Krumgalz, R. Pogorelsky, and K. S. Pitzer, J. Phys. Chem. Ref. Data 25, 663 (1996).

    Google Scholar 

  4. C. E. Harvie, N. Moller, and J. H. Weary, Geochim. Cosmochim. Acta 48, 723 (1984).

    Google Scholar 

  5. R. A. Robie, B. S. Hemingway, and J. R. Fisher, Geol. Surv. Bull. No. 1452 (1978).

  6. R. T. Pabalan and K. S. Pitzer, Geochim. Cosmochim. Acta 51, 2429 (1987).

    Google Scholar 

  7. E. J. Reardon and D. K. Amstrong, Geochim. Cosmochim. Acta 51, 63 (1987).

    Google Scholar 

  8. David R. Lide, ed., Handbook of Chemistry and Physics, 77th edn. (CRC Press, Boca Raton, Fl, 1996/1997).

    Google Scholar 

  9. K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, Vol. 1, R. M. Pytkowicz, ed. (CRC Press, Boca Raton, Fl, 1979), p. 157.

    Google Scholar 

  10. K. S. Pitzer, Activity Coefficients in Electrolyte Solution (CRC Press, Boca Raton, Fl, 1991), p. 75.

    Google Scholar 

  11. B. S. Krumgalz and F. J. Millero, Marine Chem. 11, 209 (1982).

    Google Scholar 

  12. B. S. Krumgalz and F. J. Millero, Marine Chem. 13, 127 (1983).

    Google Scholar 

  13. B. S. Krumgalz and F. J. Millero. Marine Chem. 27, 219 (1989).

    Google Scholar 

  14. S. He and J. W. Morse, Computers Geosci. 19, 1 (1993).

    Google Scholar 

  15. B. S. Krumgalz, Recent Res. Develop. Solution Chem. 1, 9 (1996).

    Google Scholar 

  16. B. S. Krumgalz, in The Dead Sea. The Lake and Its Settings. Oxford Monographs on Geology and Geophysics. No. 36, T. M. Niemi, Z. Ben-Avraham, and J. Gat, eds. (Oxford University Press, New York-Oxford, 1997), pp. 145-160.

    Google Scholar 

  17. C.-T. Chen, R. A. Fine, and F. J. Millero, J. Chem. Phys. 66, 2142 (1977).

    Google Scholar 

  18. F. J. Millero, in Chemical Oceanography, Vol. 8, J. P. Riley and R. Chester, eds. (Academic Press, London, 1983), pp. 1-88.

    Google Scholar 

  19. C. Monnin, Geochim. Cosmochim. Acta 53, 1177 (1989).

    Google Scholar 

  20. J. Ananthaswamy and G. Atkinson, J. Chem. Eng. Data 29, 81 (1984).

    Google Scholar 

  21. F. J. Millero, F. Vinokurova, M. Fernandez, and J. P. Hershey, J. Solution Chem. 16, 269 (1987).

    Google Scholar 

  22. C. Monnin, Geochim. Cosmochim. Acta 54, 3265 (1990).

    Google Scholar 

  23. B. B. Owen and S. P. Brinkley, Chem. Rev. 28, 461 (1941).

    Google Scholar 

  24. F. J. Millero, in Structure and Transport Process in Water and Aqueous Solutions, R. A. Horne, ed. (Wiley, New York, 1972), pp. 519-564.

    Google Scholar 

  25. R. W. Gurney, Ionic Processes in Solution (McGraw-Hill, New York, 1953).

    Google Scholar 

  26. M. Kaminsky, Z. Phys. Chem. (Frankfurt) 8, 173 (1956).

    Google Scholar 

  27. B. S. Krumgalz, J. Chem. Soc. Farad. Trans. 1, 79, 571 (1983).

    Google Scholar 

  28. F. J. Millero, in Activity Coefficients in Electrolyte Solutions, Vol. 2, R. M. Pytkowicz, ed. (CRC Press, Boca Raton, Fl., 1979), pp. 63-151.

    Google Scholar 

  29. F. J. Millero, A. Lo Surdo, P. Chetitkin, and N. L. Guinasso, Jr., Limnol. Oceanogr. 24, 218 (1979).

    Google Scholar 

  30. G. J. De Lange, J. J. Middelburg, C. H. Van der Weijden, G. Catalono, G. W. Luther, III, D. J. Hydes, J. R. W. Woittiez, and G. P. Klinkhammer, Marine Chem. 31, 63 (1990).

    Google Scholar 

  31. J. I. D. Drever, The Geochemistry of Natural Waters (Prentice-Hall, Englewood Cliffs, New Jersey, 1982).

    Google Scholar 

  32. L. H. Chan, J. M. Edmond, R. F. Stallard, W. S. Broecker, Y. C. Chung, R. F. Weiss, and T. L. Ku, Earth Planetary Sci. Lett. 32, 258 (1976).

    Google Scholar 

  33. G. J. De Lange and H. L. Ten Haven, Nature 305, 797 (1983).

    Google Scholar 

  34. G. J. De Lange, N. A. I. M. Boelrijk, G. Catalono, C. Corselli, G. P. Klinkhammer, J. J. Middelburg, D. W. Muller, W. J. Ullman, P. van Gaans, and J. R. W. Woittiez, Marine Chem. 31, 89 (1990).

    Google Scholar 

  35. A. Vengosh and A. Starinsky, Marine Geol. 115, 15 (1993).

    Google Scholar 

  36. A. Vengosh, A. Starinsky, and D. A. Anati, Earth Planetary Sci. Lett. 121, 613 (1994).

    Google Scholar 

  37. R. F. Shokes, P. K. Trabant, and B. J. Presley, Science 196, 1443 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumgalz, B.S., Starinsky, A. & Pitzer, K.S. Ion-Interaction Approach: Pressure Effect on the Solubility of Some Minerals in Submarine Brines and Seawater. Journal of Solution Chemistry 28, 667–692 (1999). https://doi.org/10.1023/A:1021711926908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021711926908

Navigation