Skip to main content
Log in

Raman Spectroscopic Study of Aluminum Silicate Complextion in Acidic Solutions from 25 to 150°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopic measurements were performed on aqueous acid to neutral silica-bearing solutions (0.005 ≤ m Si ≤ 0.02, 0 ≤ pH ≤ 8) and Al–silica solutions at temperature from 20 to 150°C. At 20°C, the spectrum of silica-bearing solutions exhibits only the bands of water and a completely polarized band at 785 cm−1. This band is attributed to the ν1 band of the tetrahedral Si(OH)4 molecule. In \({\text{Si(OH)}}_{\text{4}} {\kern 1pt} {\kern 1pt} - {\kern 1pt} {\text{AlCl}}_3 {\kern 1pt} - {\kern 1pt} {\text{HCl}}\) solutions, the intensity of this band decreases with increasing Al concentration, temperature, and pH. This decrease can be explained by the formation of an inner sphere complex between Al3+ and Si(OH)4 according to the reaction: \({\text{Al}}^{{\text{3 + }}} {\text{ + H}}_{\text{4}} {\text{SiO}}_{\text{4}}^{\text{0}} ({\text{aq}}){\text{ }} \Leftrightarrow {\text{ AlH}}_{\text{3}} {\text{SiO}}_{\text{4}}^{{\text{2 + }}} {\text{ + H}}^{\text{ + }} \) The fraction of complexed silica deduced from raman spectroscopic measurements is in good agreement with that calculated for the similar solution compositions and temperatures using the complexation constant generated by Pokrovski et al. (23) from potentiometric measurements. At ambient temperature, the formation of aluminum silicate complex is weak and does not account for more than ca. 5 % of the total Al in most natural waters. As temperature increases, this complex becomes more significant and can dominate Al speciation in acid (pH ≤ 2) hydrothermal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. K. Schofield and A. W. Taylor, J. Chem. Soc., p. 4445 (1954).

  2. H. Kubota, Diss. Abstr. 16, 864 (1956).

    Google Scholar 

  3. C. R. Frink and M. Peech, Inorg. Chem. 2, 473 (1963).

    Google Scholar 

  4. R. E. Mesmer and C. F. Baes, Jr., Inorg. Chem. 10, 2290 (1971).

    Google Scholar 

  5. H. M. May, P. A. Helmke, and M. L. Jackson, Geochim. Cosmochim. Acta 43, 861 (1979).

    Google Scholar 

  6. N. S. Kuyunko, S. D. Malinin, and I. L. Khodakovsky, Geochem. Intern. 20, 76 (1983).

    Google Scholar 

  7. Y. Couturier, G. Michard, and G. Sarazin, Geochim. Cosmochim. Acta 48, 649 (1984).

    Google Scholar 

  8. P. L. Brown, R. N. Sylva, G. E. Batley, and J. Ellis, J. Chem. Soc., Dalton Trans., 1967 (1985).

  9. D. A. Palmer and D. J. Wesolowski, Geochim. Cosmochim. Acta 56, 1093 (1992).

    Google Scholar 

  10. D. J. Wesolowski, Geochim. Cosmochim. Acta 56, 1065 (1992).

    Google Scholar 

  11. G. Verdes, R. Gout, and S. Castet, Eur. J. Mineral. 4, 767 (1992).

    Google Scholar 

  12. S. Castet, J. L. Dandurand, J. Schott, and R. Gout, Geochim. Cosmochim. Acta 57, 4869 (1993).

    Google Scholar 

  13. D. A. Palmer and D. J. Wesolowski, Geochim. Cosmochim. Acta 57, 2929 (1993).

    Google Scholar 

  14. D. J. Wesolowski and D. A. Palmer, Geochim. Cosmochim. Acta 58, 2947 (1994).

    Google Scholar 

  15. B. Sanjuan and G. Michard, Geochim. Cosmochim. Acta 51, 1823 (1987).

    Google Scholar 

  16. J. B. Fein, Geochim. Cosmochim. Acta 55, 955 (1991).

    Google Scholar 

  17. D. J. Wesolowski, D. A. Palmer, and G. M. Begun, J. Solution Chem. 19, 159 (1990).

    Google Scholar 

  18. P. Beńezeth, S. Castet, J. L. Dandurand, R. Gout, and J. Schott, Geochim. Cosmochim. Acta 58, 4561 (1994).

    Google Scholar 

  19. D. A. Palmer and J. L. S. Bell, Geochim. Cosmochim. Acta 58, 651 (1994).

    Google Scholar 

  20. I. Diakonov, G. Pokrovski, J. Schott, S. Castet, and R. Gout, Geochim. Cosmochim. Acta 60, 197 (1996).

    Google Scholar 

  21. B. A. Brown and C. T. Driscoll, Science 256, 1667 (1992).

    Google Scholar 

  22. V. C. Farmer and D. G. Lumsdon, Geochim. Cosmochim. Acta 58, 3331 (1994).

    Google Scholar 

  23. G. S. Pokrovski, J. Schott, J. C. Harrichoury, and A. S. Sergeyev, Geochim. Cosmochim. Acta 60, 2495 (1996).

    Google Scholar 

  24. F. Koroleff, Methods of Seawater Analysis (Springer-Verlag, Germany 1976).

    Google Scholar 

  25. R. Gout, G. Pokrovski, J. Schott, and A. Zwick, J. Raman Spectrosc. 28, 725 (1997).

    Google Scholar 

  26. J. Roux and C. Beny, Georaman-89: Contributions, 21 (ANRT, Paris, 1989).

    Google Scholar 

  27. C. F. Baes, Jr., and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York 1976).

    Google Scholar 

  28. M. Alves Marques, M. A. Sousa Oliveira, and J. Resina Rodrigues, J. Chem. Soc., Faraday Trans. 86, 471 (1990).

    Google Scholar 

  29. H. C. Helgeson and D. H. Kirkham, Amer. J. Sci. 274, 1199 (1974).

    Google Scholar 

  30. F. H. Sweeton, R. E. Mesmer and C. F. Baes, Jr., J. Solution Chem. 3, 191 (1974).

    Google Scholar 

  31. J. R. Ruaya and T. M. Seward, Geochim. Cosmochim. Acta 51, 121 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gout, R., Pokrovski, G., Schott, J. et al. Raman Spectroscopic Study of Aluminum Silicate Complextion in Acidic Solutions from 25 to 150°C. Journal of Solution Chemistry 28, 73–82 (1999). https://doi.org/10.1023/A:1021703408311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021703408311

Navigation