Skip to main content
Log in

Multipoint Series of Gromov–Witten Invariants of CP1

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive explicit formulas for the multipoint series of \(\mathbb{C}\mathbb{P}^{\text{1}}\) in degree 0 from the Toda hierarchy, using the recursions of the Toda hierarchy. The Toda equation then yields inductive formulas for the higher degree multipoint series of \(\mathbb{C}\mathbb{P}^{\text{1}}\). We also obtain explicit formulas for the Hodge integrals \(\int {_{\overline {\mathcal{M}} _{g,n} } \psi } _1^{k_1 } ...\psi _n^{k_n } \lambda _{g - i}\), in the cases i=0 and 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubrovin, B. and Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gomov-Witten invariants, math.DG/0108160.

  2. Eguchi, T. and Yang, S.-K.: The topological ℂℙ1 model and the large-N matrix integral, Modern Phys. Lett. A 9 (1994), 2893-2902, hep-th/9407134.

    Google Scholar 

  3. Eguchi, T., Hori, K, and Yang, S.-K.: Topological σ models and large-N matrix integral, Internat. J. Modern Phys. A 10 (1995), 4203-4224, hep-th/9503017.

    Google Scholar 

  4. Faber, C. and Pandharipande, R.: Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), 173-199, math.AG/9810173.

    Google Scholar 

  5. Faber, C. and Pandharipande, R.: Hodge integrals, partition matrices, and the λ g conjecture, math.AG/9908052.

  6. Getzler, E.: The Toda conjecture, In K. Fukaya et al. (eds), Symplectic Geometry and Mirror Symmetry (KIAS, Seoul, 2000), World Scientific, Singapore, 2001, pp. 51-79, math.AG/0108108.

    Google Scholar 

  7. Getzler, E. and Pandharipande, R.: Virasoro constraints and the Chern classes of the Hodge bundle, Nuclear Phys. B 530 (1998), 701-714, math.AG/9805114.

    Google Scholar 

  8. Givental, A.: Gromov-Witten invariants and the quantization of quadratic hamiltonians, math.AG/0108100.

  9. Hurwitz, A.: Uber Abel's Verallgemeinerung der binomischen Formel, Acta Math. 26 (1902), 199-203.

    Google Scholar 

  10. Okounkov, A. and Pandharipande, R.: Gromov-Witten theory, Hurwitz theory, and completed cycles, math.AG/0204305.

  11. Okounkov, A. and Pandharipande, R.: The equivariant Gromov-Witten theory of P1, math.AG/0207233.

  12. Okounkov, A. and Pandharipande, R.: The Gromov-Witten theory of target curves: Virasoro constraints and odd cohomology, In preparation.

  13. Pandharipande, R.: The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys. 53 (2000), 59-74, math.AG/9912166.

    Google Scholar 

  14. Pitman, J.: Forest volume decompositions and Abel-Cayley-Hurwitz multinomial expansions, J. Combin. Theory A 98 (2002), 175-191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getzler, E., Okounkov, A. & Pandharipande, R. Multipoint Series of Gromov–Witten Invariants of CP1 . Letters in Mathematical Physics 62, 159–170 (2002). https://doi.org/10.1023/A:1021698309415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021698309415

Navigation