Skip to main content
Log in

Backbone dynamics of the cytotoxic Ribonuclease α-sarcin by 15N NMR relaxation methods

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The cytotoxic ribonuclease α-sarcin is a 150-residue protein that inactivates ribosomes by selectively cleaving a single phosphodiester bond in a strictly conserved rRNA loop. In order to gain insights on the molecular basis of its highly specific activity, we have previously determined its solution structure and studied its electrostatics properties. Here, we complement those studies by analysing the backbone dynamics of α-sarcin through measurement of longitudinal relaxation rates R1, off resonance rotating frame relaxation rates R1ρ, and the 15N1HNOE of the backbone amide 15N nuclei at two different magnetic field strengths (11.7 and 17.6 T). The two sets of relaxation parameters have been analysed in terms of the reduced spectral density mapping formalism, as well as by the model-free approach. α-Sarcin behaves as an axial symmetric rotor of the prolate type (D/D=1.16 ± 0.02) which tumbles with a correlation time τm of 7.54 ± 0.02 ns. The rotational diffusion properties have been also independently evaluated by hydrodynamic calculations and are in good agreement with the experimental results. The analysis of the internal dynamics reveals that α-sarcin is composed of a rigid hydrophobic core and some exposed segments which undergo fast (ps to ns) internal motions. Slower motions in the μs to ms time scale are less abundant and in some cases can be assigned to specific motional processes. All dynamic data are discussed in relation to the role of some particular residues of α-sarcin in the process of recognition of its ribosomal target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Akke, M. and Palmer III, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Atwell, S., Ultsch, M., De Vos, A.M. and Wells, J.A. (1997) Science, 278, 1125–1128.

    Google Scholar 

  • Banci, L., Bertini, I., Cavazza, C., Felli, I.C. and Koulougliotis, D. (1998) Biochemistry, 37, 12320–12330.

    Google Scholar 

  • Bernadó, P., García de la Torre, J. and Pons, M. (2002) J. Biomol. NMR, 23, 139–150.

    Google Scholar 

  • Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry. Part II: Techniques for the Study of biological Structure and Function, Freeman, San Francisco, CA.

    Google Scholar 

  • Carrasco, B. and García de la Torre, J. (1999) Biophys. J., 76, 3044–3057.

    Google Scholar 

  • Clackson, T. and Wells, J.A. (1995) Science, 267, 383–386.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E. Driscoll, P.C. and Gronenborn, A. (1990) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer J., and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162.

    Google Scholar 

  • Feher, V.A. and Cavanagh, J. (1999) Nature, 400, 289–293.

    Google Scholar 

  • Fushman, D., Weisemann, R., Thüring, H. and Rüterjans, H. (1994) J. Biomol. NMR, 4, 61–78.

    Google Scholar 

  • García de la Torre, J., Huertas, M.L. and Carrasco, B. (2000) J. Magn. Reson., B147, 138–146. 316

    Google Scholar 

  • García-Ortega, L., Lacadena, J., Mancheño, J.M., Oñaderra, M., Kao, R., Davies, J., Olmo, N., Martínez del Pozo, A. and Gavilanes, J.G. (2001) Protein Sci., 10, 1658–1668.

    Google Scholar 

  • García-Ortega, L., Masip, M., Mancheño, J.M., Oñaderra, M., Lizarbe, M.A., García-Mayoral, F., Bruix, M., Martínez del Pozo, A. and Gavilanes, J.G. (2002) J. Biol. Chem., in press.

  • Guignard. L., Padilla, A., Mispelter, J., Yang, Y.S., Stern, M.H., Lhoste, J.M. and Roumestand, C. (2000) J. Biomol. NMR, 17, 215–230.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995a) Biochemistry, 34, 3162–3171.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995b) J. Magn. Reson., B108, 73–76.

    Google Scholar 

  • Jiang, J.S. and Brünger, A.T. (1994) J. Mol. Biol., 243, 100–115.

    Google Scholar 

  • Kao, R. and Davies, J. (1999) J. Biol. Chem., 274, 12576–12582.

    Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51–55.

    Google Scholar 

  • Korzhnev, D.M., Billeter, M., Arseniev, A.S. and Orekhov, V.Y. (2001) Prog. Nucl. Magn. Reson. Spectrosc., 38, 197–266.

    Google Scholar 

  • Kraulis, P.J. (1989) J. Magn. Reson., 24, 627–633.

    Google Scholar 

  • Kraulis, P.J., Domaille, P.J., Campbell-Burk S.L., van Aken, T. and Laue, E.D. (1994) Biochemistry, 33, 3515–3531.

    Google Scholar 

  • Krishnan, V.V. and Cosman, S. (1998) J. Biomol. NMR, 12, 177–182.

    Google Scholar 

  • Lacadena, J., Martínez del Pozo, A., Barbero, J.L., Mancheño, J.M., Gasset, M., Oñaderra M., López-Otín, C., Ortega, S., García, J.L. and Gavilanes J.G. (1994) Gene, 142, 147–151.

    Google Scholar 

  • Lacadena, J., Martínez del Pozo, A., Martínez-Ruiz, A., Pérez-Cañadillas, J.M., Bruix M., Mancheño, J.M., Oñaderra, M. and Gavilanes, J.G. (1999) Proteins: Struct. Funct. Genet., 37, 474–484.

    Google Scholar 

  • Lee, L.K., Rance, M., Chazin, W.J. and Palmer 3rd A.G. (1997) J. Biomol. NMR, 3, 287–298.

    Google Scholar 

  • Lefèvre, J.-F., Dayie, K.T., Peng, J.W. and Wagner, G. (1996) Biochemistry, 35, 2674–2686.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4570.

    Google Scholar 

  • Mandel, A.M., Akke, M., Palmer III, A.G. (1995) J. Mol. Biol., 246, 144–163.

    Google Scholar 

  • Mittermaier, A., Varani, L., Muhandiram, D.R., Kay, L.E. and Varani, G. (1999) J. Mol. Biol., 294, 967–979.

    Google Scholar 

  • Mulder, F.A., de Graaf, R.A., Kaptein, R. and Boelens. R. (1998) J. Magn. Reson., 131, 351–357.

    Google Scholar 

  • Mulder, F.A., van Tilborg, P.J., Kaptein, R. and Boelens, R. (1999) J. Biomol. NMR, 13, 275–288.

    Google Scholar 

  • Olmo, B.H., Turnay, J., de Buitrago, G.G., López de Silanes, I., Gavilanes, J.G. and Lizarbe, M.A. (2001) Eur. J. Biochem., 268, 2113–2123.

    Google Scholar 

  • Olson, B.H. and Goerner, G.L. (1965) Appl. Microbiol., 13, 314–321.

    Google Scholar 

  • Palmer III, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992a) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992b) Biochemistry, 31, 8571–8586.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1995) Biochemistry, 34, 16733–16752.

    Google Scholar 

  • Pérez-Cañadillas, J.M., Campos-Olivas, R., Lacadena, J., Martínez del Pozo, A., Gavilanes, J.G., Santoro, J., Rico, M. and Bruix, M. (1998) Biochemistry, 37, 15865–15876.

    Google Scholar 

  • Pérez-Cañadillas, J.M., Santoro, J., Campos-Olivas, R., Lacadena, J., Martínez del Pozo, A., Gavilanes, J.G., Rico, M, and Bruix, M. (2000) J. Mol. Biol., 299, 1061–1073.

    Google Scholar 

  • Szyperski, T., Luginbuhl, P., Otting, G., Guntert, P. and Wuthrich, K. (1993) J. Biomol. NMR, 3, 151–164.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc. 117, 12562–12566.

    Google Scholar 

  • Turnay, J., Olmo, N., Jiménez, A., Lizarbe, M.A. and Gavilanes, J.G. (1993) Mol. Cell. Biochem., 122, 39–47.

    Google Scholar 

  • Wang, C., Pawley, N.H. and Nicholson, L.K. (2001) J. Mol. Biol., 313, 873–887.

    Google Scholar 

  • Woessner, D.T. (1962) J. Chem. Phys., 37, 647–654.

    Google Scholar 

  • Wool, I.G. (1984) Trends Biochem. Sci., 9, 14–17.

    Google Scholar 

  • Wool, I.G. (1997) Structure and mechanism of action of cytotoxic ribonuclease α-sarcin. In Ribonucleases: Structure and Function, D'Alessio, G. and Riordan, J.F. (Eds.), Academic Press, San Diego, pp. 131–159.

    Google Scholar 

  • Yang, X. and Moffat, K. (1996) Structure, 4, 837–852.

    Google Scholar 

  • Yang, X, Gérczei, T., Glover, L. and Correll, C.C. (2001) Nat. Struct. Biol., 11, 968–973.

    Google Scholar 

  • Zhang, P., Dayie, K.T. and Wagner, G. (1997) J. Mol. Biol., 272, 443–455.

    Google Scholar 

  • Zinn-Justin, S., Berthault, P., Guenneugues, M. and Desvaux, H. (1997) J. Biomol. NMR, 10, 363–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Bruix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Cañadillas, J.M., Guenneugues, M., Campos-Olivas, R. et al. Backbone dynamics of the cytotoxic Ribonuclease α-sarcin by 15N NMR relaxation methods. J Biomol NMR 24, 301–316 (2002). https://doi.org/10.1023/A:1021698308683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021698308683

Navigation