Skip to main content
Log in

Small Ball Estimates for Gaussian Processes under Sobolev Type Norms

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

A sharp small ball estimate under Sobolev type norms is obtained for certain Gaussian processes in general and for fractional Brownian motions in particular. New method using the techniques in large deviation theory is developed for small ball estimates. As an application the Chung's LIL for fractional Brownian motions is given in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Airault, H., and Malliavin, P. (1988). Intégration géométrique sur l'espace de Wiener. Bull. Sci. Math. 112, 3–52.

    Google Scholar 

  2. Baldi, P., and Roynette, B. (1992). Some exact equivalents for the Brownian motion in Hölder norm. Prob. Th. Rel. Fields 93, 457–484.

    Google Scholar 

  3. Borovkov, A. A., and Mogulskii, A. A. (1991). On probabilities of small deviations for stochastic processes. Siberian Adv. Math. 1, 39–63.

    Google Scholar 

  4. Csörgő, M., Horváth, L., and Shao, Q. M. (1993). Convergence of integrals of uniform empirical and quantile processes. Stoch. Process. 45, 283–294.

    Google Scholar 

  5. Csörgő, M., and Shao, Q. M. (1994). On almost sure limit inferior for B-valued stochastic processes and applications. Prob. Th. Rel. Fields 99, 29–54.

    Google Scholar 

  6. de Acosta, A. (1983). Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Prob. 11, 78–101.

    Google Scholar 

  7. Fang, S. (1991a). Sur un résultat d'entropie de l'espace de Wiener. C.R. Acad. Sci. Paris, t. Série I. 312, 995–998.

    Google Scholar 

  8. Fang, S. (1991b). Non-dégńérescence des pseudo-norms de Sobolev sur l'espace de Wiener. Bull. Sci. Math. 115, 223–234.

    Google Scholar 

  9. Fang, S. (1992). Quelque résultats d'entropie sur l'espace de Wiener. Potential Analysis 1, 167–176.

    Google Scholar 

  10. Fernique, X. (1964). Continuité des processus Gaussiens. Comptes Rendus 258, 6058–6060.

    Google Scholar 

  11. Garsia, A. (1976). Combinatorial inequalities and smoothness of functions. Bull. Amer. Math. Soc. 82, 157–170.

    Google Scholar 

  12. Jain, N. C., and Marcus, M. B. (1978). Continuity of sub-Gaussian processes. Advances in Probability, Vol. 4. Dekker, New York, pp. 81–196.

    Google Scholar 

  13. Khatri, C. G. (1967). On certain inequalities for normal distributions and their aplications to simultaneous confidence bounds. Ann. Math. Stat. 38, 1853–1867.

    Google Scholar 

  14. Kuelbs, J., and Li, W.V. (1992a). Metric entropy and the small ball problem for Gaussian measures. J. Functional Anal. 116, 133–157.

    Google Scholar 

  15. Kuelbs, J., and Li, W. V. (1992b). Small ball estimates for Brownian motion and the Brownian sheet. J. Theor. Prob. 6, 547–577.

    Google Scholar 

  16. Kuelbs, J., Li, W. V., and Shao, Q. M. (1995). Small ball probability for Gaussian processes with stationary increments under Hölder norms. J. Theoret. Prob. 8, 361–386.

    Google Scholar 

  17. Kuelbs, J., Li, W. V., and Talagrand, M. (1994). Lim inf results for Gaussian samples and Chung's functional LIL. Ann. Prob. 22, 1879–1903.

    Google Scholar 

  18. Marcus, M. B. (1968). Gaussian process with stationary increments possessing discontinuous sample paths. Pacific J. Math. 26, 149–157.

    Google Scholar 

  19. Monrad, D., and Rootzén, H. (1995). Small values of Gaussian processes and functional laws of iterated logarithm. Prob. Th. Rel. Fields 101, 173–192.

    Google Scholar 

  20. Shao, Q. M. (1993). A note on small ball probability of Gaussian process with stationary increments. J. Theor. Prob. 6, 595–602.

    Google Scholar 

  21. Shao, Q. M., and Wang, D. (1995). Small ball probabilities of Gaussian fields. Prob. Th. Rel. Fields 102, 511–517.

    Google Scholar 

  22. Sidak, Z. (1968). On multivariate normal probabilities of rectangles: Their dependence on correlations. Ann. Math. Stat. 39, 1425–1434.

    Google Scholar 

  23. Slepian, D. (1962). The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41, 463–501.

    Google Scholar 

  24. Stolz, W. (1993). Une méthods élémentaire pour l'évaluation de petites boules Browniennes. C.R. Acad. Sci. Paris 315, 1217–1220.

    Google Scholar 

  25. Talagrand, M. (1993). New Gaussian estimates for enlarged balls. Geom. Functional Anal. 3, 502–526.

    Google Scholar 

  26. Talagrand, M. (1994). The small ball problem for the Brownian sheet. Ann. Prob. 22, 1331–1354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.V., Shao, QM. Small Ball Estimates for Gaussian Processes under Sobolev Type Norms. Journal of Theoretical Probability 12, 699–720 (1999). https://doi.org/10.1023/A:1021675731663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021675731663

Navigation