Ukrainian Mathematical Journal

, Volume 54, Issue 5, pp 741–749 | Cite as

Kolmogorov-Type Inequalities for Periodic Functions Whose First Derivatives Have Bounded Variation

  • V. F. Babenko
  • V. A. Kofanov
  • S. A. Pichugov


We obtain a new unimprovable Kolmogorov-type inequality for differentiable 2π-periodic functions x with bounded variation of the derivative x′, namely
$$\left\| {x'} \right\|_q \leqslant K\left( {q,p} \right)\left\| x \right\|_p^a \left( {\mathop V\limits_{0}^{{2\pi }} \left( {x'} \right)} \right)^{1 - {alpha }} ,$$
where q ∈ (0, ∞), p ∈ [1, ∞], and α = min{1/2, p/q(p + 1)}.


Periodic Function Bound Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Gabushin, ”Inequalities for the norms of functions and their derivatives in the metric of L p,” Mat. Zametki, 1, No. 1, 291–298 (1967).Google Scholar
  2. 2.
    V. V. Arestov and B. I. Berdyshev, ”Inequalities for differentiable functions,” in: Proceedings of the Institute of Mathematics and Mechanics of the Ural Scientific Center of the Academy of Sciences of USSR, Issue 17, Methods for the Solution of Conditionally Well-Posed Problems [in Russian] (1975), pp. 108–138.Google Scholar
  3. 3.
    B. E. Klots, ”Approximation of differentiable functions by functions of higher smoothness,” Mat. Zametki, 21, No. 1, 21–32 (1977).Google Scholar
  4. 4.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, ”On exact Kolmogorov-type inequalities in the case of small smoothness,” Dopov. Akad. Nauk Ukr., No. 6, 11–15 (1998).Google Scholar
  5. 5.
    E. M. Stein, ”Functions of exponential type,” Ann. Math., 65, No. 3, 582–592 (1957).Google Scholar
  6. 6.
    N. P. Korneichuk, A. A. Ligun, and V. G. Doronin, Approximation with Restrictions [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  7. 7.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, ”Inequalities for norms of intermediate derivatives of periodic functions and their applications,” East J. Approxim., 3, No. 3, 351–376 (1997).Google Scholar
  8. 8.
    N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. F. Babenko
    • 1
  • V. A. Kofanov
    • 1
  • S. A. Pichugov
    • 1
  1. 1.Dnepropetrovsk UniversityDnepropetrovsk

Personalised recommendations