Skip to main content
Log in

Hyperglycemia Triggers Abnormal Signaling and Proliferative Responses in Schwann Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Peripheral neuropathy is a serious diabetic complication. Delayed nerve regeneration in diabetic animal models suggests abnormalities in proliferation/differentiation of Schwann cells (SC). We recently reported that endothelins (ETs) regulate proliferation and phenotype in primary and immortalized SC (iSC). We now investigated changes in the effects of ETs on SC proliferation and signaling in nerve segments from streptozotocin-induced diabetic rats and in iSC exposed to high glucose. Cultured explants from diabetic rats displayed a delay in the time-course of [3H]-thymidine incorporation as well as enhanced sensitivity to endothelin-1 (ET-1) or insulin. iSC cultured in high (25 mM) glucose-containing media also exhibited higher [3H]-thymidine incorporation, along with an enhanced activation of p38 mitogen-activated protein kinase and phospholipase C in response to ET-1 or platelet-derived growth factor as compared to controls (5.5 mM glucose). These studies support an extra-vascular role of ETs in peripheral nerves and SC. The increased sensitivity to ET-1 in nerves and iSC exposed to high glucose may contribute to abnormal SC proliferation characterizing diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Low, P. A., Tuck, R. R., and Takeuchi, M. 1987. Nerve microenvironments in diabetic neuropathy, in “Diabetic Neuropathy” (Dyck, P. J., Thomas, P. K., Asbury, A. K., Winegrad, A. I., and Porte, D., eds.) Saunders, Philadelphia, pp. 266-278.

    Google Scholar 

  2. Dyck, P. J. and Giannini, C. 1996. Pathological alterations in the diabetic neuropathies of humans: A review. J. Neuropathol. Exp. Neurol. 55:1181-1193.

    Google Scholar 

  3. Bradley, J. L., Thomas, P. K., King, R. H., Muddle, J. R., Ward, J. D., Tesfaye, S., Boulton, A. J., Tsigos, C., and Young, R. J. 1995. Myelinated nerve fiber regeneration in diabetic sensory polyneuropathy: Correlation with type of diabetes. Acta Neuropathol. (Berl) 90:03-10.

    Google Scholar 

  4. Terada, M., Yasuda, H., and Kikkawa, R. 1998. Delayed Wallerian degeneration and increased neurofilament phosphorylation in sciatic nerves of rats with streptozotocin-induced diabetes. J. Neurol. Sci. 155:23-30.

    Google Scholar 

  5. Van Gerven, J. M. and Tjon-A-Tsien, A. M. 1995. The efficacy of aldose reductase inhibitors in the management of diabetic complication. Comparison with intensive insulin treatment and pancreatic transplantation. Drugs Aging 6:9-28.

    Google Scholar 

  6. Scarpini, E., Conti, G., Chianese, L., Baron, P., Pizzul, S., Basellini, A., Livraghi, S., and Scarlato, G. 1996. Induction of p75NGFRin human diabetic neuropathy. J. Neurol. Sci. 135:55-62.

    Google Scholar 

  7. Kalichman, W. M., Powell, H. C., and Mizisin, A. P. 1998. Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol. 95:47-56.

    Google Scholar 

  8. Vinik, A. I. 1999. Diabetic neuropathy: Pathogenesis and therapy. Am. J. Med. 107:17S-26S.

    Google Scholar 

  9. Hopfner, R. L. and Gopalakrishman, V. 1999. Endothelin: Emerging role in diabetic vascular complications. Diabetologia 42:1383-1394.

    Google Scholar 

  10. Zochodne, D. W. and Cheng, C. 1999. Diabetic peripheral nerves are susceptible to multifocal ischemic damage from endothelin. Brain Res. 838:11-17.

    Google Scholar 

  11. Wilkins, P. L., Suchovsky, D., and Berti-Mattera, L. N. 1997. Immortalized Schwann cells express endothelin receptors coupled to adenylyl cyclase and phospholipase C. Neurochem. Res. 22:409-418.

    Google Scholar 

  12. Berti-Mattera, L. N., Wilkins, P., Harwalkar, S., Madhun, Z., Almhanna K., and Mattera, R. 2000. Endothelins Regulate Arachidonic Acid Release and Mitogen-Activated Protein Kinase Activity in Schwann Cells. J. Neurochem. 75:2316-2326.

    Google Scholar 

  13. Berti-Mattera, L. N., Wilkins, P., Harwalkar, S., and Almhanna, K. 2001. Proliferative and Morphological Effects of Endothelins in Schwann Cells: Roles of p38 Mitogen Activated Protein Kinase and Ca2+-independent Phospholipase A2.J. Neurochem. 79:1136-1148.

    Google Scholar 

  14. Goraya, T., Wilkins, P., Douglas, J., Zhou, J., and Berti-Mattera, L. N. 1995. Signal transduction alterations in peripheral nerves from streptozotocin-induced diabetic rats. J. Neurosci. Res. 41: 518-525.

    Google Scholar 

  15. Tonge, D., Edstrom, A., and Ekstrom, P. 1997. Use of explant cultures of peripheral nerves of adult vertebrates to study axonal regeneration in vitro. Progress in Neurobiology 54:459-480.

    Google Scholar 

  16. Lowry, O. H., Rosebrough, N. G., Farr, A. L., and Randall, R. G. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.

    Google Scholar 

  17. Berti-Mattera, L. N., Wilkins, P. L., Madhun, Z., and Suchovsky, D. 1996. Phospholipase C and Adenylyl Cyclase Activities are Regulated by P2 Purinergic Agonists in Immortalized Schwann Cells. Biochem. J. 313:555-561.

    Google Scholar 

  18. Porter, S., Glaser, L., and Bunge, R. 1987. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc. Natl. Acad. Sci. USA 84:7768-7772.

    Google Scholar 

  19. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680-685.

    Google Scholar 

  20. Svenningsen A. F. and Kanje, M. 1998. Regulation of Schwann cell proliferation in cultured segments of adult rat sciatic nerve. J. Neurosci. Res. 52:530-537.

    Google Scholar 

  21. Sondell, M., Fex-Svenningsen, A., and Kanje, M. 1997. The insulin-like growth factor I and II stimulate proliferation of different types of Schwann cells. NeuroReport 8:2871-2876.

    Google Scholar 

  22. Brennan, A., Dean, C. H., Zhang, A. L., Cass, D. T., Mirsky, R., and Jessen, K. R. 2000. Endothelins control the timing of Schwann cell generation in vitro and in vivo. Dev. Biol. 227: 545-557.

    Google Scholar 

  23. Pomonis, J. D., Rogers, S. D., Peters, C. M., Ghilardi, J. R., and Mantyh, P. W. 2001. Expression and localization of endothelin receptors: Implications for the involvement of peripheral glia in nociception. J Neurosci. 21:999-1006.

    Google Scholar 

  24. Jaffey, P. B. and Gelman, B. B. 1996. Increased vulnerability to demyelination in streptozotocin diabetic rats. J. Comp. Neurol. 373:55-61.

    Google Scholar 

  25. Tantuwaya, V. S., Bailey, S. B., Schmidt, R. E., Villadiego, A., Tong, J. X., and Rich, K. M. 1997. Peripheral nerve regeneration through silicone chambers in streptozocin-induced diabetic rats. Brain Res. 759:58-66.

    Google Scholar 

  26. Segal, S., Hwang, S. M., Stern, J., and Pleasure, D. 1984. Inositol uptake by cultured isolated Schwann cells. Biochem. Biophys. Res. Commun. 120:486-492.

    Google Scholar 

  27. Delaney, C. L., Russell, J. W., Cheng, H. L., and Feldman, E. L. 2001. Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J. Neuropathol. Exp. Neurol. 60:147-160.

    Google Scholar 

  28. Kuruvilla, R. and Eichberg, J. 1998. Depletion of phospholipid arachidonoyl-containing molecular species in a human Schwann cell line grown in elevated glucose and their restoration by an aldose reductase inhibitor. J Neurochem. 71:775-783.

    Google Scholar 

  29. Mizisin A. P., Li L., Perello, M., Freshwater, J. D., Kalichman, M. W., Roux, L., and Calcutt, N. 1996. Polyol pathway and osmo-regulation in JS1 Schwann cells grown in hyperglycemic and hyperosmotic conditions. Am. J. Physiol. 270:F90-F97.

    Google Scholar 

  30. Maekawa, K., Tanimoto, T., Okada, S., Suzuki, T., Suzuki, T., and Yabe-Nashimura, C. 2001. Expression of aldose reductase and sorbitol dehydrogenase genes in Schwann cells isolated from rat: Effects of high glucose and osmotic stress. Brain Res. Mol. Brain. Res. 87:251-256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almhanna, K., Wilkins, P.L., Bavis, J.R. et al. Hyperglycemia Triggers Abnormal Signaling and Proliferative Responses in Schwann Cells. Neurochem Res 27, 1341–1347 (2002). https://doi.org/10.1023/A:1021671615939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021671615939

Navigation