Skip to main content
Log in

The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: Potential for paleoclimatic reconstructions

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley R.B., Mayewski P.A., Sowers T., Stuiver M., Taylor K.C. and Clark P.U. 1997. Holocene climatic instability: a prominent, widespread event 8200 yr. ago. Geology 25: 483–486.

    Article  Google Scholar 

  • Anderson R.S. 1990. Holocene forest development and paleocli mates within the central Sierra Nevada. J. Ecol. 78: 470–489.

    Google Scholar 

  • Armitage P.D. 1995. The behaviour and ecology of adults. In: Armitage P.D., Cranston P.S. and Pinder L.C. (eds), The Chironomidae: the Biology and Ecology of Non-biting Midges. Chapman and Hall, London, UK 572 pp.

    Google Scholar 

  • Battarbee R.W., Thompson R., Catalan J., Grytnes J.A. and Birks H.J.B. 2002. Climate variability and ecosystem dynamics of remote alpine arctic lakes: the MOLAR project. J. Paleolim. 28: 1–6.

    Article  Google Scholar 

  • Benson L.V., Burdett J.W., Lund S.P., Kashgarian M. and Mensing S. 1997. Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination. Nature 388: 263–265.

    Article  Google Scholar 

  • Benson L.V., Burdett J.W., Lund S.P., Kashgarian M., Rose T.P., Smoot J.P. et al. 1998. Correlation of late-Pleistocene lake-level oscillations in Mono Lake, California with north Atlantic climate events. Quat. Res. 49: 1–10.

    Article  Google Scholar 

  • Birks H.J.B. 1995. Quantitative palaeoevironmental reconstructions. In: Maddy D. and Brew J.S. (eds), Statistical Modelling of Quaternary Science Data. Technical guide 5. Quaternary Research Association, Cambridge, pp. 161–254.

    Google Scholar 

  • Birks H.J.B. 1998. Numerical tools in quantitative paleolimnology-progress, potentialities, and problems. J. Paleolim. 20: 307–322.

    Google Scholar 

  • Birks H.J.B., Line J.M., Juggins S., Stevenson A.C. and ter Braak C.J.F. 1990. Diatoms and pH reconstruction. Trans. Roy. Soc. Lond. B 327: 263–278.

    Google Scholar 

  • Bloom A.M., Moser K.A., Porinchu D.F. and MacDonald G.M. Diatom-inference models for surface water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA. J. Paleolim. (in press).

  • Bond G.C., Broecker W., Johnsen S., McManus J., Labeyrie L., Jouzel J. et al. 1993. Correlations between climate records from north Atlantic sediments and Greenland ice. Nature 365: 143–147.

    Article  Google Scholar 

  • Bond G.C. and Lotti R. 1995. Iceberg discharges into the north Atlantic on millennial time scales during the last glaciation. Science 267: 1005–1010.

    Google Scholar 

  • Bond G.C., Kromer B., Beer J., Muscheler R., Evans M.N., Showers W. et al. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294: 2130–2136.

    Article  PubMed  Google Scholar 

  • Borcard D., Legendre P. and Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Google Scholar 

  • Bradbury J.P. 1997. A diatom record of climate and hydrology for the past 200 ka from Owens Lake, California, with comparison to other Great Basin records. Quat. Sci. Rev. 16: 203–219.

    Article  Google Scholar 

  • Brooks S.J. and Birks H.J.B. 2000. Chironomid-inferred late-glåcial and early-Holocene mean July air temperatures for Krakenes lake, western Norway. J. Paleolim. 23: 77–89.

    Article  Google Scholar 

  • Brooks S.J. and Birks H.J.B. 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat. Sci. Rev. 20: 1723–1741.

    Article  Google Scholar 

  • Brundin L. 1949. Chironomiden and andere Bodentiere der südschwedischen Urgebirgsseen. Rep. Inst. Freshwat. Res. Drottningholm 30: 1–914.

    Google Scholar 

  • Brundin L. 1956. Die bodenfaunistischen Seetypen und ihre Anüwendbarkeit auf die Sudhalbkugel;. Rep. Inst. Freshwat. Res. Drottningholm 37: 186–235.

    Google Scholar 

  • Clerk S., Hall R., Quinlan R. and Smol J.P. 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadan Precambrian Shield lake. J. Paleolim. 23: 319–336.

    Article  Google Scholar 

  • Cranston P.S. 1982. A key to the larvae of the British Ortho-cladiinae (Chironomidae). Freshwat. Biol. Assoc. Pub. 45: 1–152.

    Google Scholar 

  • Cranston P.S. 1995. Introduction. In: Armitage P.D., Cranston P.S. and Pinder L.C. (eds), The Chironomidae: The Biology and Ecology of Non-biting Midges. Chapman and Hall, London, UK, pp. 31–61.

    Google Scholar 

  • Cumming B.F., Wilson S.E., Hall R.I. and Smol J.P. 1995. Diatoms from British Columbia (Canada) Lakes and Relationships to Salinity, Nutrients and Other Limnological Variables. Bibliotheca Diatomologica, J. Cramer, Stuttgart, Germany, 207 pp.

    Google Scholar 

  • Cwynar L.C. and Levesque A.J. 1995. Chironomid evidence for late-glacial climatic reversals in Maine. Quat. Res 43: 405–413.

    Article  Google Scholar 

  • Dean Jr.W.E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rock by loss-on-ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.

    Google Scholar 

  • Environment Canada 1996a. Manual of analytic methods. Volume 1: Major ions and nutrients. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, Canada, 651 pp.

    Google Scholar 

  • Environment Canada 1996b. Manual of analytic methods. Volume 1: Trace Metals. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, Canada, 446 pp.

    Google Scholar 

  • Frey D.G. 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.

    Google Scholar 

  • Glew J.R. 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. J. Paleolim. 1: 235–239.

    Article  Google Scholar 

  • Glew J. 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolim. 5: 285–287.

    Article  Google Scholar 

  • Graumlich L.J. 1993. A 1000-year record of temperature and precipitation in the Sierra Nevada. Quat. Res. 39: 249–255.

    Article  Google Scholar 

  • Hall R. and Smol J.P. 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia. Freshwat. Biol. 27: 417–434.

    Google Scholar 

  • Hann B.J., Warner B.G. and Warwick W.F. 1992. Aquatic invertebrates and climate change; a comment on Walker et al. (1991). Can. J. Fish. Aquat. Sci. 49: 1274–1276.

    Google Scholar 

  • Heinrichs M.L., Walker I.R. and Mathewes R.W. 2001. Chironomid-based paleosalinity records in southern British Columbia, Canada: a comparison of transfer functions. J. Paleolim. 26: 147–159.

    Article  Google Scholar 

  • Heiri O. and Lotter A.F. 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolim. 26: 343–350.

    Article  Google Scholar 

  • Heiri O., Lotter A.F. and Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolim. 25: 101–110.

    Article  Google Scholar 

  • Hill M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Google Scholar 

  • Hofmann W. 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. J. Paleolim. 19: 55–62.

    Article  Google Scholar 

  • Houghton J.T. 2001. Climate change 2001: the scientific basis. In: Houghton J.T. (ed.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 881 pp.

    Google Scholar 

  • Huisman J., Olff H. and Fresco L.F.M. 1993. A hierarchical set of models for species response analysis. J. Veget. Sci. 4: 37–46.

    Google Scholar 

  • Ilyashuk B.P. and Ilyashuk E.A. 2001. Response of alpine chironomid communities (Lake Chuna, Kola Peninsula, north-western Russia) to atmospheric contamination. J. Paleolim. 25: 467–475.

    Article  Google Scholar 

  • JonesV.J. and Juggins S. 1995. The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctica) subject to differing degrees of nutrient enrichment. Freshwat. Biol. 34: 433–445.

    Google Scholar 

  • Juggins S. and ter Braak C.J.F. 1993. CALIBRATE Version 0.3: A Program for Species Environment Calibration by (Weighted Averaging) Partial Least Squares Regression. Environmental Change Research Centre, University College London, London, UK.

    Google Scholar 

  • Koenig J.B. 1963. Geologic map of the Walker Lake quadrangle, California (1:250,000). U.S. Geological Survey.

    Google Scholar 

  • Korhola A. 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.

    Google Scholar 

  • Korhola A., Olander H. and Blom T. 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J. Paleolim. 24: 43–54.

    Article  Google Scholar 

  • Lamarche Jr. V.C. 1974. Paleoclimatic inferences from long tree-ring records. Science 183: 1043–1048.

    Google Scholar 

  • Lamarche Jr. V.C. and Mooney H.A. 1967. Altithermal timberline advance in Western United States. Nature 213: 980–982.

    Google Scholar 

  • Larocque I., Hall R.I. and Grahn E. 2001. Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolim. 26: 307–322.

    Article  Google Scholar 

  • Levesque A.J., Mayle F.E., Walker I.R. and Cwynar L.C. 1993. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626.

    Article  Google Scholar 

  • Levesque A.J., Cwynar L.C. and Walker I.R. 1994. A multi-proxy investigation of late-glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.

    Article  Google Scholar 

  • Levesque A.J., Cwynar L.C. and Walker I.R. 1997. Exceptionally steep north-south gradients in lake temperatures during the last deglaciation. Nature 385: 423–426.

    Article  Google Scholar 

  • Lindegaard C. and Brodersen K.P. 2000. The influence of temperature on emergence periods of Chironomidae (Diptera) from a shallow Danish lake. In: Hoffrichter O. (ed.), Late 20th Century Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen, Germany, pp. 313–324.

    Google Scholar 

  • Little J.L. and Smol J.P. 2001. A chironomid-based model for inferring late-summer hypolimnetic oxygen in southeastern Ontario lakes. J. Paleolim. 26: 259–270.

    Article  Google Scholar 

  • Livingstone D.M. and Lotter A.F. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J. Paleolim. 19: 181–198.

    Article  Google Scholar 

  • Lloyd A. and Graumlich L. 1997. Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78: 1199–1210.

    Google Scholar 

  • Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Article  Google Scholar 

  • Lotter A.F., Walker I.R., Brooks S.J. and Hofmann W. 1999. An intercontinental comparison of chironomid paleotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.

    Article  Google Scholar 

  • Mackay A.P. 1977. Growth and development of larval Chironomidae. Oikos 28: 270–275.

    Google Scholar 

  • Major J. 1988. California climate in relation to vegetation. In: Barbour M. and Major J. (eds), Terrestrial Vegetation of California. California Native Plant Society Special Publication 9., pp. 11–74.

  • McGarrigle M.L. 1980. The distribution of chironomid communities and controlling sediment parameters in L. Derravarragh, Ireland. In: Murray D.A. (ed.), Chironomidae: Ecology, Systematics, Cytology and Physiology. Pergamon Press, Oxford, UK, pp. 275–282.

    Google Scholar 

  • Menzie C.A. 1981. Production ecology of Cricotopus sylvestris (Fabricius) (Diptera: Chironomidae) in a shallow estuarine cove. Limnol. Oceanogr. 26: 467–481.

    Google Scholar 

  • Olander H., Birks H.J.B., Korhola A. and Blom T. 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9: 279–294.

    Article  Google Scholar 

  • Oliver D.R. 1976. Chironomidae (Diptera) of Char Lake, Cornwallis Island, N.W.T., with descriptions of two new species. Can. Ent. 108: 1053–1064.

    Google Scholar 

  • Oliver D.R. and Roussel M.E. 1983. The insects and arachnids of Canada, Part 11: The genera of larval midges of Canada-Diptera: Chironomidae. Agriculture Canada, Ottawa, Canada, Publ. 1746; 263 pp.

    Google Scholar 

  • Paterson C.G. and Walker K.F. 1974. Seasonal dynamics and productivity of Tanytarsus barbitarsis Freeman (Diptera: Chironomidae) in the benthos of a shallow, saline lake. Aust. J. Mar. Freshwat. Res. 25: 151–165.

    Google Scholar 

  • Pinder L.C.V. 1986. Biology of freshwater Chironomidae. Ann. Rev. Entomol. 31: 1–23.

    Google Scholar 

  • Porinchu D.F. and Cwynar L.C. 2000. The distribution of fresh water Chironomidae (Insecta: Diptera) across treeline near the lower Lena River, northeast Siberia. Arct. Antarct. Alp. Res. 32: 429–437.

    Google Scholar 

  • Porinchu D.F. and Cwynar L.C. 2002. Late-Quaternary history of midge communities and climate from a tundra site near the lower Lena River, northeast Siberia. J. Paleolim. 27: 59–69.

    Article  Google Scholar 

  • Prentice I.R. 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31: 71–104.

    Article  Google Scholar 

  • Quinlan R. and Smol J.P. 2001. Setting minimum head capsule abundance and taxa criteria in chironomid-based inference models. J. Paleolim. 26: 327–342.

    Article  Google Scholar 

  • Rossaro B. 1991. Chironomids and water temperature. Aquatic Insects 13: 87–98.

    Google Scholar 

  • Scuderi L.A. 1993. A 2000-year tree ring record of annual temperatures in the Sierra Nevada Mountains. Science 259: 1433–1436.

    Google Scholar 

  • Sierra Nevada Ecosystem Project 1996. Assessment summaries and management strategies. Vol. 1. Regents of the University of California, 161 pp.

  • Simpson K.W. and Bode R.W. 1980. The common larvae of chironomidae (Diptera) from New York state streams and rivers. New York State Museum Bull. 49: 1–103.

    Google Scholar 

  • Smol J.P., Cumming B.F., Douglas M.S.V. and Pienitz R. 1995. Inferring past climatic changes in Canada using paleolimnological techniques. Geosci. Can. 21: 113–118.

    Google Scholar 

  • Sorvari S., Korhola A. and Thomson R. 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biol. 8: 171–181.

    Article  Google Scholar 

  • Stine S. 1994. Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369: 546–549.

    Article  Google Scholar 

  • Strand R.G. 1967. Geologic map of the Mariposa quadrangle, California (1:250,000). U.S. Geological Survey.

    Google Scholar 

  • Taylor K.C., Lamorey G.W., Doyle G.A., Alley R.B., Grootes P.M., Mayewski P.A. et al. 1993. The 'flickering switch' of late-Pleistocene climate change. Nature 361: 432–436.

    Article  Google Scholar 

  • ter Braak C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Braak C.J.F. 1995. Ordination. In: Jongman R.H.G., ter Braak C.J.F. and van Tongeren O.F.R. (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, UK, pp. 91–169.

    Google Scholar 

  • ter Braak C.J.F. and Prentice I.C. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.

    Google Scholar 

  • ter Braak C.J.F. and Smilauer P. 1998. CANOCO reference manual and User's guide to CANOCO for Windows. Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY, USA, 352 pp.

    Google Scholar 

  • ter Braak C.J.F., Juggins S., Birks H.J.B. and van derVoet H. 1993. Weighted averaging partial least squares regression (WA-PLS): Definition and comparison with other methods for species-environment calibration. In: Patil G.P. and Rao C.R. (eds), Multivariate Environmental Statistics. Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 525–560.

    Google Scholar 

  • Thienemann A. 1954. Chironomus. Die Binnengewasser 20. Schweizerbart, Stuttgart, Germany, 834 pp.

    Google Scholar 

  • Thompson R.S., Whitlock C., Bartlein P., Harrison S. and Spaulding W. 1993. Climatic changes in the western United States since 18,000 yr. BP. In: Wright Jr. H.E., Kutzbach J.E., Webb III T., RuddimanW.F., Street-Perrott F.A. and Bartlein P. (eds), Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, MN, USA, pp. 468–513.

    Google Scholar 

  • Timms B.V. 1983. A study of benthic communities in some shallow saline lakes of western Victoria, Australia. Hydrobiology 105: 165–177.

    Article  Google Scholar 

  • Titmus G. 1979. The emergence of midges (Diptera: Chironomidae) from a wet gravel-pit. Freshwat. Biol. 9: 165–179.

    Google Scholar 

  • Unruh J.R. 1991. The uplift of the Sierra Nevada and implications for late-Cenozoic epeirogeny in the western Cordillera. Geol. Soc. Am. Bull. 103: 1395–1404.

    Article  Google Scholar 

  • Verschuren D. 1994. Sensitivity of tropical-African aquatic invertebrates to short-term trends in lake level and salinity: a paleolimnological test at Lake Oloidien, Kenya. J. Paleolim. 10: 253–263.

    Article  Google Scholar 

  • Verschuren D., Laird K.R. and Cumming B.F. 2000a. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature 403: 410–414.

    Article  PubMed  Google Scholar 

  • Verschuren D., Tibby J., Sabbe K. and Roberts N. 2000b. Effects of depth, salinity and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.

    Google Scholar 

  • Walker I.R. 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.

    Article  Google Scholar 

  • Walker I.R. 1988. Late-Quaternary Paleoecology of Chironomidae (Diptera: Insecta) from Lake Sediments in British Columbia, Ph.D. dissertation, Simon Fraser University, Burnaby, Canada 204 pp.

    Google Scholar 

  • Walker I.R. 2000. The WWW Field Guide to Sub-fossil Midges. www.ouc.bc.ca/eesc/iwalker /wwwguide/.

  • Walker I.R. and MacDonald G.M. 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 27: 258–263.

    Google Scholar 

  • Walker I.R. and Mathewes R.W. 1989. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.

    Article  Google Scholar 

  • Walker I.R., Smol J.P., Engstrom D.R. and Birks H.J.B. 1991a. An assessment of Chironomidae as quantitative indicators of past climate change. Can. J. Fish. Aquat. Sci. 48: 975–987.

    Google Scholar 

  • Walker I.R., Mott R.J. and Smol J.P. 1991b. Allerød-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.

    Google Scholar 

  • Walker I.R., Wilson S.E. and Smol J.P. 1995. Chironomidae (Diptera): quantitative paleosalinity indicators for lakes of western Canada. J. Paleolim. 52: 950–960.

    Google Scholar 

  • Walker I.R., Levesque A.F., Cwynar L.C. and Lotter A.F. 1997. An expanded surface-water paleotemperature inference model for use with fossil midges in eastern Canada. J. Paleolim. 18: 165–178.

    Article  Google Scholar 

  • Ward G.M. and Cummings K.W. 1978. Life history and growth pattern of Paratendipes albimanus in a Michigan headwater stream. Ann. Ent. Soc. Am. 71: 272–284.

    Google Scholar 

  • Warner B.G. and Hann B.J. 1987. Aquatic invertebrates as paleoclimatic indicators? Quat. Res. 28: 427–430.

    Article  Google Scholar 

  • Warwick W.F. 1989. Chironomids, lake development and climate: a commentary. J. Paleolim. 2: 15–17.

    Article  Google Scholar 

  • Western Regional Climate Center 2002. Retrieved from the World Wide Web April 20, 2002. http: / /www.wrcc.dri.edu.

  • Wetzel R.G. 2002. Limnology: Lake and River Ecosystems in San Diego. Academic Press, 1006 pp.

  • Wiederholm T. 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I-Larvae. Ent. Scand. 19 Suppl.: 1–457.

    Google Scholar 

  • Wilson S.E., Walker I.R., Mott R.J. and Smol J.P. 1993. Climatic and limnological changes associated with the Younger Dryas in Atlantic Canada. Clim. Dyn. 8: 177–187.

    Article  Google Scholar 

  • Winnell M.H. and White D.S. 1985. Trophic status of southeastern Lake Michigan based on the Chironomidae (Diptera). J. Great Lakes Res. 11: 540–548.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Porinchu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porinchu, D.F., MacDonald, G.M., Bloom, A.M. et al. The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: Potential for paleoclimatic reconstructions. Journal of Paleolimnology 28, 355–375 (2002). https://doi.org/10.1023/A:1021658612325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021658612325

Navigation