Skip to main content
Log in

Chemical shift correlation via RFDR: Elimination of resonance offset effects

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

It is shown that it is possible to effectively execute RFDR experiments with adiabatic inversion pulses and obtain resonance offset compensation that is superior to what can be achieved by conventional rectangular pulses. Employing 40-μs tanh/tan adiabatic pulses at a power level of ∼38 kHz and a spinning speed of 12 kHz it is demonstrated that the range of resonance offset compensation achieved is sufficient to generate, via a single experiment, homonuclear chemical shift correlation spectra in the entire 13C chemical shift range in peptides/proteins at the currently available field strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldus, M. and Meier, B.H. (1996) J. Magn. Reson., A121, 65–69.

    Google Scholar 

  • Baldus, M., Geurts, D.G.and Meier, B.H. (1998) Solid State Nucl. Magn. Reson., 11, 157–168.

    PubMed  Google Scholar 

  • Baum, J., Tycko, R. and Pines, A. (1985)Phys. Rev., A32, 3435–3447.

    Google Scholar 

  • Bennett, A.E., Griffin, R.G. and Vega, S. (1994) NMR Basic Principles andProgress, Springer-Verlag, Berlin, 33, 1–77.

    Google Scholar 

  • Bennett, A.E., Ok, J.H., Griffin, R.G. and Vega, S. (1992) J.Chem. Phys., 96, 8624–8627.

    Google Scholar 

  • Bennett, A.E., Rienstra, C.M., Griffiths, J.M., Zhen, W., Lansbury, P.T. and Griffin, R.G. (1998) J. Chem. Phys., 108, 9463–9479.

    Google Scholar 

  • Boender, G.J., Raap, J., Prytulla, S., Oschkinat, H. and deGroot, H.J.M. (1995) Chem. Phys. Lett., 237, 502–508.

    Google Scholar 

  • Detken, A., Hardy, E.H., Ernst, M., Kainosho, M., Kawakami, T., Aimoto, S. and Meier, B.H. (2001) J. Biomol. NMR, 20, 203–221.

    PubMed  Google Scholar 

  • Dusold, S. and Sebald, A.(2000) Annu. Rep. NMR Spectrosc., 41, 185–264.

    Google Scholar 

  • Fujiwara, T. and Nagayama, K. (1988) J. Magn. Reson.,77, 53–63.

    Google Scholar 

  • Gilchrist Jr., M.L., Monde, K., Tomita, Y., Iwashita, T., Nakanishi, K. and McDermott, A.E. (2001)J. Magn. Reson., 152, 1–6.

    PubMed  Google Scholar 

  • Griffin, R.G. (1998) Nature Struct. Biol., 5, 508–512.

    PubMed  Google Scholar 

  • Griffiths, J.M., Lakshmi, K.V., Bennett, A.E., Raap, J., van derWielen, C.M., Lugtenburg, J., Herzfeld, J. and Griffin, R.G. (1994) J. Am. Chem. Soc., 116, 10178–10181.

    Google Scholar 

  • Gullion, T., Baker, D.B. and Schaefer, J. (1990) J. Magn. Reson., 89,479–484.

    Google Scholar 

  • Hardy, E.H., Verel, R. and Meier, B.H. (2001) J. Magn. Reson., 148, 459–464.

    PubMed  Google Scholar 

  • Heise, B. (2001)PhD thesis, Friedrich-Schiller-Universität Jena.

  • Heise, B., Leppert, J. and Ramachandran, R. (2000) J. Magn. Reson.,146, 181–187.

    PubMed  Google Scholar 

  • Hwang, T., van Zijl, P.C.M., and Garwood, M. (1998) J. Magn. Reson., 133, 200–203.

    PubMed  Google Scholar 

  • Ishii, Y. (2001) J. Chem. Phys., 114, 8473–8483.

    Google Scholar 

  • Ishii, Y., Ashida, J. and Terao, T. (1995) Chem. Phys. Lett.,246, 439–445.

    Google Scholar 

  • Kupce, J. and Freeman, R. (1995) J. Magn. Reson., A117, 246–256.

    Google Scholar 

  • Kupce, J. and Freeman, R. (1996) J. Magn. Reson., A118, 299–303.

    Google Scholar 

  • Leppert, J. (2001) PhD thesis, Friedrich-Schiller-UniversitätJena.

  • Leppert, J., Heise, B., Görlach, M. and Ramachandran, R. (2002) J. Biomol. NMR, 23, 227–238.

    PubMed  Google Scholar 

  • McDermott, A., Polenova, T., Bockmann, A., Zilm, K.W., Paulsen, E.K., Martin, R.W. and Montelione, G.T. (2000) J. Biomol. NMR, 16, 209–219.

    PubMed  Google Scholar 

  • Pauli, J., Baldus, M., van Rossum, B., de Groot, H. and Oschkinat, H. (2001) Chem.Bio. Chem., 2, 272–281.

    PubMed  Google Scholar 

  • Pauli, J., von Rossum, B., Förster, H., de Groot, H.J.M and Oschkinat, H. (2000) J.Magn. Reson., 143, 411–416.

    PubMed  Google Scholar 

  • Sodickson, D.K., Levitt, M.H., Vega, S. and Griffin, R.G. (1993) J. Chem. Phys.,98, 6742–6748.

    Google Scholar 

  • Sun, B.-Q., Rienstra, C.M., Costa, P.R., Willamson, J.R. and Griffin, R.G. (1997) J. Am. Chem.Soc., 119, 8540–8546.

    Google Scholar 

  • Tannus, A. and Garwood, M. (1996) J. Magn. Reson., A120, 133–137.

    Google Scholar 

  • Tycko, R., Pines, A. and Guckenheimer, J. (1985) J. Chem. Phys., 83, 2775–2802.

    Google Scholar 

  • van Rossum, B., Schulten, E.A.M., Raap, J., Oschkinat, H. and de Groot, H.J.M (2002), J. Magn. Reson., 155, 1–14.

    PubMed  Google Scholar 

  • Verel, R., Ernst, M. and Meier, B.H. (2001) J. Magn. Reson., 150, 81–99.

    PubMed  Google Scholar 

  • Zaborowski, E., Zimmermann, H. and Vega, S.(1999) J. Magn. Reson., 136, 47–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramadurai Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heise, B., Leppert, J., Ohlenschläger, O. et al. Chemical shift correlation via RFDR: Elimination of resonance offset effects. J Biomol NMR 24, 237–243 (2002). https://doi.org/10.1023/A:1021655316318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021655316318

Navigation