Skip to main content
Log in

Concentration dependences of heat conductivity coefficients of inert gases in narrow pores

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Calculation of the transfer of molecules in porous systems requires self-consistent expressions describing the kinetic transfer coefficients for various concentrations and temperatures. The concentration dependences of heat conductivity and self-diffusion coefficients for fluids with different densities, ranging from rarefied gases to liquids, were considered in terms of a unified model. For monoatomic gases (argon), the model takes into account two energy transfer channels, namely, the vacancy mechanism and energy transfer through collisions of molecules. The former channel is characteristic of rarefied gases, while the latter is noted for condensed phases. The energy parameters of the model were determined on the basis of data on the heat conductivity coefficient in the bulk phase. The heat conductivity coefficient follows a linear temperature dependence for low density; in the medium and large density regions, these dependences follow a more complex pattern that changes depending on temperature. The influence of the interaction of atoms with the pore walls on the concentration dependences of the heat conductivity coefficients was investigated for different total amounts of the adsorbate. These coefficients depend appreciably on the distance to the pore wall and on the direction of heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Timofeev, Kinetika adsorbtsii [Adsorption Kinetics], Izd. Akad. Nauk SSSR, Moscow, 1962, 252 pp. (in Russian).

    Google Scholar 

  2. V. V. Rachinskii, Vvedenie v obshchuyu teoriyu dinamiki sorbtsii i khromatografii [Introduction to the General Theory of Sorption and Chromatography], Nauka, Moscow, 1964, 134 pp. (in Russian).

    Google Scholar 

  3. C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis, MIT Press, Cambridge, Mass, 1970.

    Google Scholar 

  4. D. M. Ruthven, Principles of Adsorption and Adsorption Processes, J. Wiley and Sons, New York, 1984.

    Google Scholar 

  5. E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media: The Dusty-gas Model, Elsevier, Amsterdam, 1983.

    Google Scholar 

  6. M. M. Dubinin, Zh. Fiz. Khim., 1960, 34, 959 [J. Phys. Chem. USSR, 1960, 34 (Engl. Transl.)].

    Google Scholar 

  7. S. J. Gregg and K. G. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1982.

    Google Scholar 

  8. Yu. K. Tovbin and E. V. Votyakov, Izv. Akad. Nauk, Ser. Khim., 2001, 48 [Russ. Chem. Bull, Int. Ed., 2001, 50, 50].

  9. Yu. K. Tovbin, IX Mezhdunar. konf. po teoreticheskim voprosam adsorbtsii i adsorbtsionnoi khromatografii [Proc. Int. Conf. on the Theoretical Problems of Adsorption and Adsorption Chromatography], Institute of Physical Chemistry, Russian Academy of Sciences, Moscow, 2001, 11 (in Russian).

    Google Scholar 

  10. S. F. Borisov, N. F. Balakhonov, and V. A. Gubanov, Vzaimodeistviya gazov s poverkhnost'yu tverdogo tela [Interaction of Gases with a Solid Surface], Nauka, Moscow, 1988, 200 pp. (in Russian).

    Google Scholar 

  11. B. D. Todd and D. J. Evans, J. Chem. Phys., 1995, 103, 9804.

    Google Scholar 

  12. J. M. D. MacElroy, J. Chem. Phys., 1994, 101, 5274.

    Google Scholar 

  13. E. Akhmatskaya, B. D. Todd, P. J. Davis, D. J. Evans, K. E. Gubbins, and L. A. Pozhar, J. Chem. Phys., 1997, 106, 4684.

    Google Scholar 

  14. Adsorbtsiya v Mikroporakh [Adsorption in Micropores], Eds. M. M. Dubinin and V. V. Serpinskii, Nauka, Moscow, 1983, 114 (in Russian).

    Google Scholar 

  15. R. Sh. Vartapetyan, A. M. Voloshchuk, and I. Kerger, VIII Mezhdunar. konf. "Teoriya i praktika adsorbtsionnykh protsessov" [Proc. Int. Conf. on the Theory and Practice of Adsorption Processes], Institute of Physical Chemistry, Russian Academy of Sciences, Moscow, 1997, 63 (in Russian).

    Google Scholar 

  16. B. D. Todd, P. J. Daivis, and D. J. Evans, Phys. Rev., E, 1995, 51, 4362.

    Google Scholar 

  17. K. P. Travis and D. J. Evans, Phys. Rev., E, 1996, 55, 1566.

    Google Scholar 

  18. K. P. Travis, B. D. Todd, and D. J. Evans, Physica A, 1997, 240, 315.

    Google Scholar 

  19. M. M. Mansour, F. Baras, and A. L. Garsia, Physica A, 1997, 240, 255.

    Google Scholar 

  20. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

    Google Scholar 

  21. J. H. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland Publ. Comp., Amstredam-London, 1972.

    Google Scholar 

  22. C. A. Croxton, Liquid State Physics-A Statistical Mechanical Introduction, Cambridge Univer. Press, Cambridge, 1974.

    Google Scholar 

  23. Yu. K. Tovbin, Zh. Fiz. Khim., 1998, 72, 1446 [Russ. J. Phys. Chem., 1998, 72, No. 12 (Engl. Transl.)].

    Google Scholar 

  24. Yu. K. Tovbin, Zh. Fiz. Khim., 2002, 76, 76 [Russ. J. Phys. Chem., 2002, 76, No. 1 (Engl. Transl.)].

    Google Scholar 

  25. Yu. K. Tovbin, Khim. Fiz., 2002, 21, 83 [Chem. Phys. Reports, 2002, 21, No. 1 (Engl. Transl.)].

    Google Scholar 

  26. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, J. Wiley and Sons, Inc., New York-London, 1965.

    Google Scholar 

  27. V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Teplofizicheskie svoistva neona, argona, kriptona i ksenona [Thermal Properties of Neon, Argon, Krypton, and Xenon], Izd. standartov, Moscow, 1976 (in Russian).

    Google Scholar 

  28. M. A. Anisimov, V. A. Rabinovich, and V. V. Sychev, Termodinamika kriticheskogo sostoyaniya [Critical State Thermodynamics], Energoatomizdat, Moscow, 1990, 190 pp. (in Russian).

    Google Scholar 

  29. Statistical Mechanics. Principles and Selected Applications, McGraw-Hill Book Comp. Inc., New York, 1956.

  30. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface, CRC Press Inc., Boca Raton, Fr., 1991.

    Google Scholar 

  31. E. V. Votyakov, Yu. K. Tovbin, J. M. D. MacElroy, and A. Roche, Langmuir, 1999, 15, 5713.

    Google Scholar 

  32. A. M. Vishnyakov, E. M. Piotrovskaya, E. N. Brodskaya, E. V. Votyakov, and Yu. K. Tovbin, Zh. Fiz. Khim., 2000, 74, 501 [Russ. J. Phys. Chem., 2000, 74, No. 3 (Engl. Transl.)].

    Google Scholar 

  33. Yu. K. Tovbin, and N. F. Vasyutkin, Zh. Fiz. Khim., 2002, 76, 319 [Russ. J. Phys. Chem., 2002, 76, No. 2 (Engl. Transl.)].

    Google Scholar 

  34. Yu. K. Tovbin, Zh. Fiz. Khim., 1995, 69, 118 [Russ. J. Phys. Chem., 1995, 69, No. 1 (Engl. Transl.)].

    Google Scholar 

  35. E. A. Moelwyn-Hughes, Physical Chemistry, Pergamon Press, London-New York-Paris, 1961.

    Google Scholar 

  36. Yu. K. Tovbin and E. V. Votyakov, Langmuir, 1993, 9, 2652.

    Google Scholar 

  37. V. A. Pindyurin, S. Yu. Surovtsev, and Yu. K. Tovbin, Zh. Fiz. Khim., 1986, 60, 945 [Russ. J. Phys. Chem., 1986, 60, No. 4 (Engl. Transl.)].

    Google Scholar 

  38. Yu. K. Tovbin, Dokl. Akad. Nauk SSSR, 1990, 312, 1423 [Dokl. Chem., 1990 (Engl. Transl.)].

    Google Scholar 

  39. Yu. K. Tovbin, Progress in Surface Science, 1990, 34, 1.

    Google Scholar 

  40. Yu. K. Tovbin and E. V. Votyakov, Izv. Akad. Nauk, Ser. Khim., 2000, 605 [Russ. Chem. Bull, Int. Ed., 2000, 49, 609].

  41. B. V. Egorov, V. N. Komarov, Yu. E. Markachev, and Yu. K. Tovbin, Zh. Fiz. Khim., 2000, 74, 882 [Russ. J. Phys. Chem., 2000, 74, No. 5 (Engl. Transl.)].

    Google Scholar 

  42. Yu. K. Tovbin and V. N. Komarov, Zh. Fiz. Khim., 2001, 75, 579 [Russ. J. Phys. Chem., 2001, 75, No. 3 (Engl. Transl.)].

    Google Scholar 

  43. Yu. K. Tovbin, Zh. Fiz. Khim., 1988, 72, 865 [Russ. J. Phys. Chem., 1998, 72, No. 5 (Engl. Transl.)].

    Google Scholar 

  44. W. A. Steele, The Interactions of Gases with Solid Surfaces, Pergamon, New York, 1974.

    Google Scholar 

  45. S. Sokolowski and J. Fischer, Mol. Phys., 1990, 71, 393.

    Google Scholar 

  46. Yu. K. Tovbin, M. M. Senyavin, and L. K. Zhidkova, Zh. Fiz. Khim., 1999, 73, 301 [Russ. J. Phys. Chem., 1999, 73, No. 2 (Engl. Transl.)].

    Google Scholar 

  47. J. A. Barker and D. Henderson, Rev. Mod. Phys., 1976, 48, 587.

    Google Scholar 

  48. O. Yu. Batalin, Yu. K. Tovbin, and V. K. Fedyanin, Zh. Fiz. Khim., 1980, 53, 3020 [Russ. J. Phys. Chem., 1980, 53, No. 12 (Engl. Transl.)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tovbin, Y.K., Komarov, V.N. Concentration dependences of heat conductivity coefficients of inert gases in narrow pores. Russian Chemical Bulletin 51, 2026–2035 (2002). https://doi.org/10.1023/A:1021651608056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021651608056

Navigation