Skip to main content
Log in

A Concept of Standardization of Relations for Computing Wind Wave Components

  • Published:
Power Technology and Engineering Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. SNiP (Building Regulations) 2.06.04-82*, Loads and Impacts on Hydrotechnical Structures. Wind, Ice, and Watercraft [in Russian], Minstroi Rossii, Moscow (1995).

  2. S. S. Strekalov, “Ageneralized method for computing wind wave parameters,” in: Trudy Soyuzmorniiproekta [in Russian], Vol. 36, Transport, Moscow (1974).

    Google Scholar 

  3. S. S. Strekalov, “State-of-the-art and problems in wind wave studies for purposes of hydrotechnical construction,” in: Proc. of the Conf. and Meetings on Hydroengineering [in Russian], Énergoizdat, Leningrad (1982).

    Google Scholar 

  4. G. V. Matushevskii and I. M. Kobatchenko, “A parametric integral model of wind waves matched with the All-Union Building Regulations,” Morsk. Gidrotekh. Zh., No. 1 (1989).

  5. M. M. Zaslavskii, I. M. Kabatchenko, and G. V. Matushevskii, “Joint adapted model of surface wind and wind waves” in: Problems in Study and Simulation of Wind-Induced Waves [in Russian], Gidrometeoizdat, St. Petersburg (1995).

    Google Scholar 

  6. G. V. Matushevskii and I. M. Kobatchenko, “Recent concept of determination of extremum characteristics of wind waves and related processes by analyzing samples of storm data,” Meteorol. Gidrol., No. 1 (1999).

  7. I. V. Lavrenov, Mathematical Modeling of Wind Waves Spatial-Nonuniform Ocean [in Russian], Gidrometeoizdat, St. Petersburg (1998).

    Google Scholar 

  8. I. P. Davidan, I. V. Lavrenov, T. A. Pasechnik, et al., “Mathematical modeling and a method for on-line computation of wind waves in USSR seas,” Meteorol. Gidrol., No. 11 (1988).

  9. K. Hasselman, T. Barnett, E. Bouws et al., “Measurements of wind-waves growth and swell decay during the Joint North Sea Wave Project (JONSWAP),” Deut. Hydrogr. Z., No. 12 (1973).

  10. WAMDI group, “The WAM model of a third generation ocean wave prediction model,” J. Phys. Ocean, 12 (1988).

  11. W. Perrie and B. Toulany, “Fetch relations for wind-generated waves as a function of wind stress scaling,” J. Phys. Ocean, 20 (1990).

  12. L. H. Holthuijsen, N. Booij, and T. M. Herbers, “A prediction model for secondary short-crested waves in shallow water with ambient currents,” Coastal Engineering, 13 (1989).

  13. P. A. Janssen, G. J. Komen, and W. J. de Voogt, “An operational coupled hybrid wave prediction model,” J. Geophys. Res., 89 (1984).

  14. H. Gunter, W. Rosenthal, T. Weare et al., “A hybrid parametrical wave prediction model,” J. Geophys. Res., 84 (1979).

  15. E. Bouws, M. Gunter, W. Rosenthal, and C. L. Vincent, “Similarity of the wind wave spectrum in finite depth water. Part 1. Spectral form,” Deut. Hydrogr. Z., 90 (1985).

  16. E. B. Mikhalenko, S. M. Mishchenko, and S. A. Frolov, “New methods for standardization of wave loads on marine hydrotechnical structures,” Gidrotekh. Stroit., No. 11 (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinenko, G.I., Strekalov, S.S. A Concept of Standardization of Relations for Computing Wind Wave Components. Power Technology and Engineering 36, 284–288 (2002). https://doi.org/10.1023/A:1021650420487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021650420487

Keywords

Navigation