Skip to main content
Log in

Mutational Analysis of the Conserved Motif of the ArdA Antirestriction Protein Encoded by Self-transmissible IncI Plasmid ColIb-P9

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A study was made of the functional role of the ArdA antirestriction motif (130-LLADVPETVALYFD-143) conserved among all known Ard (alleviation of restriction of DNA) proteins, which are encoded by self-transmissible plasmids and specifically inhibit type I restriction–modification systems. Conserved residues of the motif were individually changed, and the resulting mutants tested for in vivo activity. Hydrophobic L130, L131, and V138 were substituted with negatively charged E; negatively charged D133, E136, and D143 substituted with hydrophobic V; and D127, D150, and D154 neighboring the antirestriction motif substituted with V. Four substitutions (L130E, L131E, V138E, and D143V) substantially (25–1000 times) reduced the ArdA activity. The other substitutions within or beyond the motif had no appreciable effect. Substitutions L130A and L131A each reduced the ArdA activity 10- to 20-fold, indicating that high hydrophobicity of L130 and L131 is important for the ArdA function. Thus, the antirestriction role of ArdA is indeed due to its conserved motif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Datta, N., Plasmids in Bacteria, Helinski, D.R., Cohen, S.N., Clewell, D.B., et al., New York: Plenum, 1985, pp. 3–16.

    Google Scholar 

  2. Mazodier, P. and Davies, J., Annu. Rev. Genet., 1991, vol. 25, pp. 147–171.

    Google Scholar 

  3. Pansegrau, W., Lanka, E., Barth, P.T., et al., J. Mol. Biol., 1994, vol. 239, pp. 623–663.

    Google Scholar 

  4. Wilkins, B., Population Genetics of Bacteria, Baumberg, S., Young, J.P.W., Wellington, E.M.H, and Saunders, J.R., Eds., Cambridge: Cambridge Univ. Press, 1995, pp. 59–88.

    Google Scholar 

  5. Amabile-Cuevas, C.F. and Chicurei, M.E., Cell, 1992, vol. 70, pp. 189–199.

    Google Scholar 

  6. Sonea, S., Symbiosis as a Source of Evolutionary Innovation, Margulis, L. and Fester, R., Eds., Cambridge, Mass.: MIT, 1991, pp. 95–105.

    Google Scholar 

  7. Raleigh, E.A., Trimarchi, R., and Revel, H., Genetics, 1989, vol. 122, pp. 279–296.

    Google Scholar 

  8. Bickle, T.A. and Kruger, D.H., Microbiol. Rev., 1993, vol. 57, pp. 434–450.

    Google Scholar 

  9. Barcus, V.A. and Murray, N.E., Population Genetics of Bacteria, Baumberg, J.P.W., Young, S.R., and Wellington, E.M.H., Eds., Cambridge: Cambridge Univ. Press, 1995, pp. 31–58.

    Google Scholar 

  10. Belogurov, A.A. and Zavilgelsky, G.B., Dokl. Akad. Nauk SSSR, 1983, vol. 269, pp. 738–741.

    Google Scholar 

  11. Zavilgelsky, G.B., Mershavka, V.Yu., Yusifov, T.N., and Belogurov, A.A., Mol. Biol., 1984, vol. 18, pp. 1590–1596.

    Google Scholar 

  12. Belogurov, A.A., Yussifov, T.N., Kotova, V.U., and Zavilgelsky, G.B., Mol. Gen. Genet., 1985, vol. 198, pp. 509–513.

    Google Scholar 

  13. Kotova, V.Yu., Zavilgelsky, G.B., and Belogurov, A.A., Mol. Biol., 1988, vol. 22, pp. 270–276.

    Google Scholar 

  14. Delver, E.P., Kotova, V.U., Zavilgelsky, G.B., and Belogurov, A.A., J. Bacteriol., 1991, vol. 173, pp. 5887–5892.

    Google Scholar 

  15. Belogurov, A.A., Delver, E.P., and Rodzevich, O.V., J. Bacteriol., 1992, vol. 174, pp. 5079–5085.

    Google Scholar 

  16. Read, T.D., Thomas, A.T., and Wilkins, B.M., Mol. Microbiol., 1992, vol. 6, pp. 1939–1941.

    Google Scholar 

  17. Belogurov, A.A., Delver, E.P., and Rodzevich, O.V., J. Bacteriol., 1993, vol. 175, pp. 4843–4850.

    Google Scholar 

  18. Chilley, P.M. and Wilkins, B.M., Microbiology, 1995, vol. 141, pp. 2157–2164.

    Google Scholar 

  19. Belogurov, A.A. and Delver, E.P., Nucleic Acids Res., 1995, vol. 23, pp. 785–787.

    Google Scholar 

  20. Belogurov, A.A., Delver, E.P., Agafonova, O.V., et al., J. Mol. Biol., 2000, vol. 296, pp. 969–977.

    Google Scholar 

  21. Murray, N.E., Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 412–434.

    Google Scholar 

  22. Yanisch-Perron, C., Viera, J., and Messing, J., Gene, 1985, vol. 33, pp. 103–119.

    Google Scholar 

  23. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  24. Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 5463–5467.

    Google Scholar 

  25. Bachmann, B.J., Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Ingraham, J.L., Low, K.B., Magasanik, B., et al., Eds., Washington, DC: Am. Soc. Microbiol., 1987, pp. 1190–1219.

    Google Scholar 

  26. Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W., Methods Enzymol., 1991, vol. 185, pp. 60–89.

    Google Scholar 

  27. Bandyopadhyay, P.K., Studier, F.W., Hamilton, D.L., and Yuan, R.J., J. Mol. Biol., 1985, vol. 182, pp. 567–578.

    Google Scholar 

  28. Atanasiu, C., Byron, O., McMiken, H., et al., Nucleic Acids Res., 2001, vol. 29, pp. 3059–3068.

    Google Scholar 

  29. Dunn, J.J., Elzinda, M., Mark, K.-K., and Studier, F.W., J. Biol. Chem., 1981, vol. 256, pp. 2579–2585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delver, E.P., Sobennikova, M.V., Belogurova, N.G. et al. Mutational Analysis of the Conserved Motif of the ArdA Antirestriction Protein Encoded by Self-transmissible IncI Plasmid ColIb-P9. Molecular Biology 36, 864–868 (2002). https://doi.org/10.1023/A:1021646328954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021646328954

Navigation