Skip to main content
Log in

Existence and Regularity for a Class of Infinite-Measure (ξ, ψ, K)-Superprocesses

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We extend the class of (ξ, ψ, K)-superprocesses known so far by applying a simple transformation induced by a “weight function” for the one-particle motion. These transformed superprocesses may exist under weak conditions on the branching parameters, and their state space automatically extends to a certain space of possibly infinite Radon measures. It turns out that a number of superprocesses which were so far not included in the general theory fall into this class. For instance, the hyperbolic branching catalyst of Fleischmann and Mueller(12) is included and we are able to extend it to the case of β-branching. In the second part of this paper, we discuss regularity properties of our processes. Under the assumption that the one-particle motion is a Hunt process, we show that our superprocesses possess right versions having càdlàg paths with respect to a natural topology on the state space. The proof uses an approximation with branching particle systems on Skorohod space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dawson, D. A. (1993). Measure-valued Markov processes. École d'Été de Probabilités de Saint Flour 1991. Lecture Notes in Math., Vol. 1541, Springer.

  2. Dawson, D. A. and Fleischmann, K. (1997). A continuous super-Brownian motion in a super Brownian medium. J. Theoret. Prob. 10(1), 213–276.

    Google Scholar 

  3. Dawson, D. A., Fleischmann, K., and Leduc, G. (1998). Continuous dependence of a class of superprocesses on branching parameters and applications. Ann. Prob. 26, 562–601.

    Google Scholar 

  4. Dawson, D. A., and Perkins, E. (1991). Historical processes. Mem. Amer. Math. Soc. 454.

  5. Dellacherie, C., and Meyer, P.-A. (1975). Probabilités et Potentiel, Hermann, Paris.

    Google Scholar 

  6. Dynkin, E. B. (1982). Regular Markov processes. In Markov Processes and Related Problems in Analysis, Cambridge University Press, London.

    Google Scholar 

  7. Dynkin, E. B. (1991). Branching particle systems and superprocesses. Ann. Prob. 19, 1157–1194.

    Google Scholar 

  8. Dynkin, E. B. (1991). Path processes and historical superprocesses. Prob. Th. Rel. Fields 90, 1–36.

    Google Scholar 

  9. Dynkin, E. B. (1994). An introduction to branching measure-valued processes. CRM Monograph Series, 6. American Mathematical Society, Providence.

    Google Scholar 

  10. Ethier, S. N., and Kurtz, T. G. (1986). Markov Processes—Characterization and Convergence, Wiley, New York.

    Google Scholar 

  11. Fitzsimmons, P. J. (1988). Construction and regularity of measure-valued Markov branching processes. Israel J. Math. 64, 337–361.

    Google Scholar 

  12. Fleischmann, K. and Mueller, C. (1997). A super-Brownian motion with a locally infinite catalytic mass. Prob. Th. Rel. Fields 107, 325–357.

    Google Scholar 

  13. Iscoe, I. (1986). A weighted occupation time for a class of measure-valued critical branching processes. Prob. Th. Rel. Fields 71, 85–16.

    Google Scholar 

  14. Jakubowski, A. (1986). On the Skorohod topology. Ann. Inst. H. Poincaré Prob. Stat. 22(3), 263–285.

    Google Scholar 

  15. Kolesnikov, A. V. (1999). Über die topologischen Eigenschaften des Skorohod-Raumes. To appear in Th. Prob. Appl.

  16. Kuznetsov, S. E. (1984). Nonhomogeneous Markov processes. J. Soviet Mat. 25, 1380–1498.

    Google Scholar 

  17. Kuznetsov, S. E. (1994). Regularity properties of a supercritical superprocess. The Dynkin Festschrift, Birkhäuser, Boston, Progr. Probab. 34, 221–235.

    Google Scholar 

  18. Le Jan, Y. (1983). Quasi-continuous functions and Hunt processes. J. Math. Soc. Japan 35, 37–42.

    Google Scholar 

  19. Ma, Z. M., and Röckner, M. (1992). Introduction to the Theory of (nonsymmetric) Dirichlet forms. Springer-Verlag, Berlin.

    Google Scholar 

  20. Neveu, J. (1986). Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Prob. Stat. 22, 199–207.

    Google Scholar 

  21. Roelly-Coppoletta, S. (1986). A criterion of convergence of measure-valued processes: Application to measure branching processes. Stochastics 17, 43–65.

    Google Scholar 

  22. Schied, A. (1996). Sample path large deviations for super-Brownian motion. Prob. Th. Rel. Fields 104, 319–347.

    Google Scholar 

  23. Watanabe, S. (1968). A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8, 141–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schied, A. Existence and Regularity for a Class of Infinite-Measure (ξ, ψ, K)-Superprocesses. Journal of Theoretical Probability 12, 1011–1035 (1999). https://doi.org/10.1023/A:1021645204173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021645204173

Navigation