Skip to main content
Log in

Precise Asymptotics in Spitzer's Law of Large Numbers

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let X, X 1, X 2,... be a sequence of i.i.d. random variables such that EX=0, assume the distribution of X is attracted to a stable distribution with exponent α<1, and set S n=X 1+ ··· +X n. We prove that

$$\sum\limits_{n{\text{ }} \geqslant {\text{ }}1} {{\text{ }}\frac{{\text{1}}}{{\text{n}}}{\text{ }}} P(|S_n | \geqslant \varepsilon n){\text{ }} \sim {\text{ }}\frac{\alpha }{{\alpha - 1}}{\text{ }}( - \log \varepsilon {\text{) as }}\varepsilon \searrow {\text{0}}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chen, R. (1978). A remark on the tail probability of a distribution. J. Multivariate Anal. 8, 328–333.

    Google Scholar 

  2. Chow, Y. S., and Teicher, H. (1978). Probability Theory, Springer, New York.

    Google Scholar 

  3. Cramér, H. (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton.

    Google Scholar 

  4. Erdős, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286–291.

    Google Scholar 

  5. Erdős, P. (1950). Remark on my paper “On a theorem of Hsu and Robbins.” Ann. Math. Statist. 21, 138.

    Google Scholar 

  6. Fuk, D. H., and Nagaev, S. V. (1971). Probability inequalities for sums of independent random variables. Th. Prob. Appl. 16, 643–660.

    Google Scholar 

  7. Heyde, C. C. (1975). A supplement to the strong law of large numbers. J. Appl. Prob. 12, 173–175.

    Google Scholar 

  8. Hsu, P. L., and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33, 25–31.

    Google Scholar 

  9. Ibragimov, I. A., and Linnik, Yu. V. (1971). Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen.

    Google Scholar 

  10. Katz, M. (1963). The probability in the tail of a distribution. Ann. Math. Statist. 34, 312–328.

    Google Scholar 

  11. Loéve, M. (1977). Probability Theory, Vol. 1. Fourth Edition, Springer, New York.

    Google Scholar 

  12. Pruss, A. R. (1997). A two-sided estimate in the Hsu-Robbins-Erdős law of large numbers. Stoch. Proc. Appl. 70, 173–180.

    Google Scholar 

  13. Pruss, A. R. (1977). Comparisons between tail probabilities of sums of independent symmetric random variables. Ann. Inst. H. Poincaré Prob. Statist. 33, 651–671.

    Google Scholar 

  14. Slivka, J., and Severo, N. C. (1970). On the strong law of large numbers. Proc. Amer. Math. Soc. 24, 729–734.

    Google Scholar 

  15. SpĂtaru, A. (1990). Strengthening the Hsu-Robbins-Erdős theorem. Rev. Roumaine Math. Pures Appl. 35, 463–465.

    Google Scholar 

  16. Spitzer, F. (1956). A combinatorial lemma and its applications to probability theory. Trans. Amer. Math. Soc. 82, 323–339.

    Google Scholar 

  17. Vuillieumier, M. (1967). Sur le comportement asymptotique des transformations linéaires des suites. Math. Zeitsch. 98, 126–139.

    Google Scholar 

  18. Wu, C. F. (1973). A note on the convergence rate of the strong law of large numbers. Bull. Inst. Math. Acad. Sinica 1, 121–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spătaru, A. Precise Asymptotics in Spitzer's Law of Large Numbers. Journal of Theoretical Probability 12, 811–819 (1999). https://doi.org/10.1023/A:1021636117551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021636117551

Navigation