Exact Solutions of the Schrödinger Equation with Inverse-Power Potential

Abstract

The Schrödinger equation for stationary states is studied in a central potential V(r) proportional to r −β in an arbitrary number of spatial dimensions. The presence of a single term in the potential makes it impossible to use previous algorithms, which only work for quasi-exactly-solvable problems. Nevertheless, the analysis of the stationary Schrödinger equation in the neighbourhood of the origin and of the point at infinity is found to provide relevant information about the desired solutions for all values of the radial coordinate. The original eigenvalue equation is mapped into a differential equation with milder singularities, and the role played by the particular case β = 4 is elucidated. In general, whenever the parameter β is even and larger than 4, a recursive algorithm for the evaluation of eigenfunctions is obtained. Eventually, in the particular case of two spatial dimensions, the exact form of the ground-state wave function is obtained for a potential containing a finite number of inverse powers of r, with the associated energy eigenvalue.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    G. C. Maitland, M. Rigby, E. B. Smith and W. A. Wakeham, Intermolecular Forces (Oxford University Press, Oxford, 1987).

    Google Scholar 

  2. 2.

    R. J. LeRoy and W. Lam, Chem. Phys. Lett. 71, 544 (1970); R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. 52, 3869 (1970).

    ADS  Article  Google Scholar 

  3. 3.

    E. Vogt and G. H. Wannier, Phys. Rev. 95, 1190 (1954).

    ADS  Article  Google Scholar 

  4. 4.

    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Vol. 3, 3rd edn. (Pergamon Press, Oxford, 1977). D. R. Bates and I. Esterman, Advances in Atomic and Molecular Physics, Vol. 6 (Academic, New York, 1970).

    MATH  Google Scholar 

  5. 5.

    B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecule. (Longmans, London, 1983).

    Google Scholar 

  6. 6.

    S. Özcelik and M. Simsek, Phys. Lett. A 152, 145 (1991).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    R. S. Kaushal and D. Parashar, Phys. Lett. A 170, 335 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    R. S. Kaushal, Ann. Phys. (N. Y.) 206, 90 (1991).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    S. H. Dong and Z. Q. Ma, J. Phys. A 31, 9855 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    S. H. Dong and Z. Q. Ma, “Exact solutions of the Schrödinger Equation with the Sextic Potential in Two Dimensions,” submitted to J. Phys. A.

  11. 11.

    S. H. Dong and Z. Q. Ma, “An exact solution of the Schrödinger equation with the octic potential in two dimensions,” submitted to J. Phys. A.

  12. 12.

    V. de Alfaro and T. Regge, Potential Scattering (North Holland, Amsterdam, 1965).

    MATH  Google Scholar 

  13. 13.

    S. Fubini and R. Stroffolini, Nuovo Cimento 37, 1812 (1965).

    MathSciNet  Article  Google Scholar 

  14. 14.

    F. Calogero, Variable Phase Approach to Potential Scattering (Academic, New York, 1967).

    MATH  Google Scholar 

  15. 15.

    R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1967).

    Google Scholar 

  16. 16.

    W. M. Frank, D. J. Land and R. M. Spector, Rev. Mod. Phys. 43, 36 (1971).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    R. Stroffolini, Nuovo Cimento A 2, 793 (1971).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    G. Esposito, J. Phys. A 31, 9493 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    A. O. Barut, J. Math. Phys. 21, 568 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    A. V. Turbiner, Commun. Math. Phys. 118, 467 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    G. Esposito, Found. Phys. Lett. 11, 535 (1998).

    MathSciNet  Article  Google Scholar 

  22. 22.

    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).

    MATH  Google Scholar 

  23. 23.

    E. M. Harrell, Ann. Phys. (N. Y.) 105, 379 (1977).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    W. Bulla and F. Gesztesy, J. Math. Phys. 26, 2520 (1985).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, SH., Ma, ZQ. & Esposito, G. Exact Solutions of the Schrödinger Equation with Inverse-Power Potential. Found Phys Lett 12, 465–474 (1999). https://doi.org/10.1023/A:1021633411616

Download citation

  • quantum mechanics
  • scattering states
  • bound states