Skip to main content
Log in

Unblocked statistical-coil tetrapeptides and pentapeptides in aqueous solution: A theoretical study

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

NMR studies of the molecular conformations of peptides and proteins rely on a comparison of the relevant spectral parameters with the corresponding values for so-called statistical-coilpolypeptides. For this reason, it is necessary to characterize the experimental ensemble of states populated by statistical-coilpeptides. Such a characterization, however, has proven to be both difficult and sensitive to changes in many environmental parameters such as solvent composition, temperature, pH, as well as the neighboring amino acids in the sequence. As a consequence, a series of significant discrepancies has been reported for some experimentally observed parameters, such as chemical shifts, or vicinal coupling constants, 3JNHα, whose values appear to be incompatible with a statistical-coilensemble. In this work, we report the results of a molecular mechanics study of a series of unblocked tetra- and pentapeptides under different pH conditions. These calculations were carried out with explicit consideration of both the coupling between the process of proton binding/release and conformation adopted by the molecule at a given pH and the contribution of the conformational entropy to the total free energy. Good agreement was found between the calculated and experimentally determined values of the vicinal coupling constant, 3JNHα, the α-proton chemical shift, and the 13Cαchemical shift. All the evidence accumulated in these theoretical calculations helps to rationalize some of the unsettled anomalies observed experimentally, and to provide an understanding of the effect of pH and amino acid sequence on the conformational preferences of statistical-coilpeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagno, A. (2001) Chem. Eur. J., 7, 1652–1661.

    Google Scholar 

  • Bashford, D. and Karplus, M. (1990) Biochemistry, 29, 10219–10225.

    PubMed  Google Scholar 

  • Becke, A.D. (1993) J. Chem. Phys., 98, 5648–5652.

    Article  Google Scholar 

  • Beroza, P., Fredkin, D.R., Okamura, M.Y. and Feher, G. (1995) Biophys. J., 68, 2233–2250.

    PubMed  Google Scholar 

  • Bundi, A. and Wüthrich, K. (1979a) Biopolymers, 18, 285–297.

    Google Scholar 

  • Bundi, A. and Wüthrich, K. (1979b) Biopolymers, 18, 299–311.

    Google Scholar 

  • Cheeseman, J.R., Trucks, G.W., Keith, T.A. and Frisch, M.J. (1996) J. Chem. Phys., 104, 5497–5509.

    Google Scholar 

  • Chesnut, D.B. (1996) Rev. Comput. Chem., 8, 245–297.

    Google Scholar 

  • De Marco, A., Llinás, M. and Wüthrich K. (1978) Biopolymers, 17, 617–636.

    Google Scholar 

  • Ditchfield, R. (1974) Mol. Phys., 27, 789–807.

    Google Scholar 

  • Dyson, H.J., Sayre, J.R., Merutka, G., Shin, H.-C., Lerner, R.A. and Wright, P.E. (1992) J. Mol. Biol. 226, 819–835.

    PubMed  Google Scholar 

  • Edsall, J.T. and Wyman J. (1958) In Biophysical Chemistry, Volume I, (Table IX), Academic Press Inc., New York, p. 536.

    Google Scholar 

  • Facelli, J.C. (1998) J. Phys. Chem. B., 102, 2111–2116.

    Google Scholar 

  • Ferraro, M.B. (2000) J. Mol. Struct. (Theochem.), 528, 199–209.

    Google Scholar 

  • Fiebig, K.M., Schwalbe, H., Buck, M., Smith, L.J. and Dobson, C.M. (1996) J. Phys. Chem., 100, 2661–2666.

    Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., and Pople, J.A. (1998) Gaussian 98, Revision A.7, Inc., Pittsburgh PA.

    Google Scholar 

  • Gay, D.M., (1983) ACM Trans. Math. Software, 9, 503–524.

    Google Scholar 

  • Gilson, M.K. (1993) Prot. Struct. Funct. Genet., 15, 266–282.

    Google Scholar 

  • Gō, N. and Scheraga, H.A. (1969) J. Chem. Phys., 51, 4751–4767.

    Google Scholar 

  • Havlin, R.H., Le, H., Laws, D.D., deDios, A.C. and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11951–11958.

    Google Scholar 

  • Helgaker, T., Jaszuński, M., and Ruud, K. (1999) Chem. Rev., 99, 293–352.

    PubMed  Google Scholar 

  • Hennig, M., Bermel, W., Spencer, A., Dobson, C.M., Smith, L.J. and Schwalbe, H. (1999) J. Mol. Biol., 288, 705–723.

    PubMed  Google Scholar 

  • Jameson, A.K., and Jameson, C.J. (1987) Chem. Phys. Lett., 134, 461–466.

    Google Scholar 

  • Jiménez, M.A., Nieto, J.L., Rico, M., Santoro, J., Herranz, J. and Bermejo, F.J. (1986) J. Mol. Struct., 143, 435–438.

    Google Scholar 

  • Karplus, M. (1959) J. Chem. Phys., 30, 11–15.

    Google Scholar 

  • Karplus, M. (1963) J. Am. Chem. Soc., 85, 2870–2871.

    Google Scholar 

  • Kemmink, J., Van Mierlo, C.P.M., Scheek, R.M. and Creighton, T.E. (1993) J. Mol. Biol., 220, 312–322.

    Google Scholar 

  • Laskowski, Jr. M. and Scheraga, H.A. (1954) J. Am. Chem. Soc., 76, 6305–6319.

    Google Scholar 

  • Lee, C, Yang, W. and Parr, R.G. (1988) Phys. Rev. B., 37, 785–789.

    Google Scholar 

  • Merutka, G., Dyson, H.J. and Wright, P.E. (1995) J. Biom. NMR, 5, 14–24.

    Google Scholar 

  • Momany, F. A., McGuire, R.F., Burgess, A.W. and Scheraga H.A. (1975) J. Phys. Chem., 79, 2361–2381.

    Google Scholar 

  • Némethy, G., Gibson, K.D., Palmer, K.A., Yoon C.N., Paterlini G., Zagari, A., Rumsey, S. and Scheraga H.A. (1992) J. Phys. Chem., 96, 6472–6484.

    Google Scholar 

  • Némethy, G., Pottle, M.S. and Scheraga H.A. (1983) J. Phys. Chem., 87, 1883–1887.

    Google Scholar 

  • Neurath, H. Greenstein, J.P., Putnam, F.W. and Erickson, J.O. (1944) Chem. Revs., 34, 157–265.

    Google Scholar 

  • O'Connell, T.M., Wang, L., Tropsha, A. and Hermans, J. (1999) Prot. Struct. Funct. Genet., 36, 407–418.

    Google Scholar 

  • O'Donnell, T.J., Hotovy, S.G., Pottle, M.S., Ripoll, D.R. and Scheraga, H.A. (1996) In Lecture Notes in Computer Science, Vol. 1067: High-Performance Computing and Networking, Liddel, H. Colbrook, A., Hertzberger, B. and Sloot, P., Eds., Springer-Verlag, Berlin, Heidelberg, New York, pp. 365–373.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215–230.

    PubMed  Google Scholar 

  • Pardi, A., Billeter, M. and Wüthrich, K. (1984) J. Mol. Biol., 180, 741–751.

    PubMed  Google Scholar 

  • Pearson, J.G., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H., and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11941–11950.

    Google Scholar 

  • Perrin, D.D. (1972) Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London.

    Google Scholar 

  • Ramachandran, G.N., Ramakrishnan, C. and Sasisekharan, V. (1963) J. Mol. Biol., 7, 95–99.

    PubMed  Google Scholar 

  • Richarz, R. and Wüthrich, K. (1978) Biopolymers, 17, 2133–2141.

    Google Scholar 

  • Ripoll, D.R. and Scheraga, H.A. (1988) Biopolymers, 27, 1283–1303.

    PubMed  Google Scholar 

  • Ripoll, D.R. and Scheraga, H.A. (1989) J. Protein Chem., 8, 263–287.

    PubMed  Google Scholar 

  • Ripoll, D.R., Liwo, A. and Scheraga, H.A. (1998) Biopolymers, 46, 117–126.

    PubMed  Google Scholar 

  • Ripoll, D.R., Vorobjev, Y.N., Liwo, A., Vila, J.A. and Scheraga H.A. (1996) J. Mol. Biol., 264, 770–783.

    PubMed  Google Scholar 

  • Scheraga, H.A., Vila, J.A. and Ripoll, D.R. (2002) Biophys. Chem., in press.

  • Schwarzinger, S., Kroon, G.J.A., Foss, T.R., Chung, J., Wright, P.E. and Dyson, H.J. (2001) J. Am. Chem. Soc., 123, 2970–2978.

    PubMed  Google Scholar 

  • Serrano, L. (1995) J. Mol. Biol., 254, 322–333.

    PubMed  Google Scholar 

  • Simonson, T. and Brünger, A.T. (1994) J. Phys. Chem., 98, 4683–4694.

    Google Scholar 

  • Sippl, M.J., Némethy, G. and Scheraga, H.A. (1984) J. Phys. Chem., 88, 6231–6233.

    Google Scholar 

  • Sitkoff, D. and Case, D.A. (1997) J. Am. Chem. Soc., 119, 12262–12273.

    Google Scholar 

  • Sitkoff, D., Sharp, K.A. and Honig, B. (1994) J. Phys. Chem., 98, 1978–1988.

    Google Scholar 

  • Smith, L.J., Bolin, K.A., Schwalbe, H., MacArthur, M.W., Thornton, J.M. and Dobson, C.M. (1996) J. Mol. Biol., 255, 494–506.

    PubMed  Google Scholar 

  • Sun, H., Sanders, L.K. and Oldfield, E. (2002) J. Am. Chem. Soc., 124, 5486–5495.

    PubMed  Google Scholar 

  • Swindells, M.B., MacArthur, M.W. and Thornton, J.M. (1995) Nat. Struct. Biol., 2, 596–603.

    PubMed  Google Scholar 

  • Vila, J.A., Ripoll, D.R. and Scheraga, H.A. (2000) Proc. Natl. Acad. Sci. USA, 97, 13075–13079.

    PubMed  Google Scholar 

  • Vila, J.A., Ripoll, D.R. and Scheraga, H.A. (2001) Biopolymers, 58, 235–246.

    PubMed  Google Scholar 

  • Vila, J.A., Ripoll, D.R., Villegas, M.E., Vorobjev, Y.N. and Scheraga, H.A. (1998) Biophys. J., 75, 2637–2646.

    PubMed  Google Scholar 

  • Vorobjev, Y.N. and Scheraga, H.A. (1997) J. Comput. Chem., 18, 569–583.

    Google Scholar 

  • Vorobjev, Y.N., Scheraga, H.A., Hitz, B. and Honig, B. (1994) J. Phys. Chem., 98, 10940–10948.

    Google Scholar 

  • Vorobjev, Y.N., Scheraga, H.A. and Honig, B. (1995) J. Phys. Chem., 99, 7180–7187.

    Google Scholar 

  • Wang, B., Fleischer, U., Hinton, J.F. and Pulay, P. (2001) J. Comp. Chem., 22, 1887–1895.

    Google Scholar 

  • West, N.J. and Smith, L.J. (1998) J. Mol. Biol., 280, 867–877.

    PubMed  Google Scholar 

  • Williamson, P.M., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 93–98.

    Google Scholar 

  • Wishart, D.S. and Case, D.A. (2001) Meth. Enzymol., 338, 3–34.

    PubMed  Google Scholar 

  • Wishart, D.S. and Nip, A.M. (1998) Biochem. Cell Biol., 76153–163.

    PubMed  Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.

    PubMed  Google Scholar 

  • Wolinski, K., Hinton, J.F. and Pulay, P. (1990) J. Am. Chem. Soc., 112, 8251–8260.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, John Wiley and Sons, New York, NY, p. 17.

    Google Scholar 

  • Xu, X.-P. and Case, D.A. (2001) J. Biomol. NMR, 21, 321–333.

    PubMed  Google Scholar 

  • Yang, A.-S. and Honig, B. (1993) J. Mol. Biol., 231, 459–474.

    PubMed  Google Scholar 

  • Yang, A.-S., Gunner, M.R., Sampogna, R., Sharp, K. and Honig, B. (1993) Prot. Struct. Funct. Genet., 15, 252–265.

    Google Scholar 

  • Zimmerman, S.S., Pottle, M.S., Némethy, G. and Scheraga, H.A. (1977) Macromolecules, 10, 1–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Scheraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vila, J.A., Ripoll, D.R., Baldoni, H.A. et al. Unblocked statistical-coil tetrapeptides and pentapeptides in aqueous solution: A theoretical study. J Biomol NMR 24, 245–262 (2002). https://doi.org/10.1023/A:1021633403715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021633403715

Navigation