Skip to main content
Log in

Structure determination of a pseudotripeptide zinc complex with the COSMOS-NMR force field and DFT methods

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A His-X-His pseudotripeptide zinc complex (X is a N-alkyl glycine derivative) similar to the catalytic center of the carbonic anhydrase was computer designed and experimentally synthesized. Using 2D-NMR techniques, all proton, carbon chemical shifts and nuclear overhauser effect signals were assigned. The three-dimensional structure of the complex was determined with the COSMOS (computer simulation of molecular structures) force field by applying 13C bond polarization theory chemical shift pseudo forces and restrictions for NOE distances. From molecular dynamics, simulated annealing simulations and geometry optimizations, the three best force field structures were taken for a final investigation by density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alia, Matysik, J., Erkelens, C., Hulsbergen, F.B., Gast, P., Lugtenburg, J. and de Groot, H.J.M. (2000) Chem. Phys. Lett., 330, 325–330.

    Google Scholar 

  • Alsfasser, R., Ruf, M., Trofimenko, S. and Vahrenkamp, H. (1993) Chem. Ber., 126, 703.

    Google Scholar 

  • Basosi, R., Gaggelli, E., Gaggelli, N., Pogni, R. and Valensin (1998) Inorg. Chim. Acta, 275, 274–278.

    Google Scholar 

  • Becke, A.D. (1993) J. Chem. Phys., 98, 5648.

    Google Scholar 

  • Braun, S., Kalinowski, H.O. and Berger, S. (1998) 150 and More Basic NMR-Experiments, Wiley-VCH, New York, NY.

    Google Scholar 

  • Burns, G. (1964) J. Chem. Phys., 41, 1521.

    Google Scholar 

  • Del R. (1958) J. Chem. Soc., 4031.

  • Förster, M., Brasack, I., Duhme, A.-K., Nolting, H.-F. and Vahrenkam, H. (1996) Chem. Ber., 129, 347.

    Google Scholar 

  • Gaussian 98 (1998) Revision A.5, Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  • Gockel, P., Gelinsky, M., Vogler, R. and Vahrenkamp, H. (1998) Inorg. Chim. Acta, 272, 115.

    Google Scholar 

  • Greiner, G., Seyfarth, L., Poppitz, W., Witter, R., Sternberg, U. and Reißmann, S. (2000) Lett. Peptide Sci., 7, 133–141.

    Google Scholar 

  • Grotendorst, J. (2000) Modern Methods and Algorithms of Quantum Chemistry, NIC, 1.

  • Herr, U., Spahl, W., Trojandt, G. Steglich, W., Thaler, F. and van Eldrik, R. (1999) Bioorg. Med. Chem., 7, 699.

    Google Scholar 

  • Karplus, M. (1959) J. Chem. Phys., 30, 11–15.

    Google Scholar 

  • Kimura, E. (1994) In Progress in Inorganic Chemistry, Vol. 41

  • Karlin, K.D. (Ed.), Wiley, New York, NY, p. 443.

  • Klug, A. and Rhodes, D. (1987) Trends. Biochem. Sci., 12, 464.

    Google Scholar 

  • Koch, F.T., Bräuer, M., Kunert, M., Sternberg, U. and Anders, E. (2001) J. Mol. Model., 7, 54–64.

    Google Scholar 

  • Koch, F.-T., Losso, P. and Sternberg, U., COSMOS: Computer Simulation of Molecular Structures, www.cosmos-software.de 289

  • Koch, F.T., Möllhoff, M. and Sternberg, U. (1994) J. Comp. Chem., 15, 524.

    Google Scholar 

  • Krizek, B.A., Amann, B.T., Kilfoil, V.J., Merkle, D.L. and Berg, J.M. (1991) J. Am. Chem. Soc., 113, 4518.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Luisis, B.F., Xu, W.X., Otwinowsky, Z., Freedman, L.P., Yamamoto, K.R. and Sigler, P.B. (1991) Nature, 352, 497.

    Google Scholar 

  • Magafa, V., Stavropoulos, G. and Tsiveriotis, P. (1998) Inorg. Chim. Acta, 272, 7–17.

    Google Scholar 

  • Magonet E., Hayen, D., Delforge, D., Delaire, F. and Remacle, J. (1992) Biochem J., 287, 361 and references therein.

    Google Scholar 

  • Malrieu, J.-P. (1977) Mod. Theor. Chem., 7, 69.

    Google Scholar 

  • Marmorstein, R., Carey, M., Ptashne, M. and Harrison, S.C. (1992) Nature, 356, 408.

    Google Scholar 

  • Mauksch, M., Bräuer, M., Weston, J. and Anders, E. (2001) Chem. Biochem., 2, 190–198.

    Google Scholar 

  • Möllhoff, M. and Sternberg, U. (2001) J. Mol. Model., 7, 90–120.

    Google Scholar 

  • O'Keefe, M. and Brese, N.E. (1991) J. Am. Chem. Soc., 113, 3226–3229.

    Google Scholar 

  • Priess, W. and Sternberg, U. (2001) J. Mol. Struct: Theochem., 544 (1–3), 181–190.

    Google Scholar 

  • Slater, J.C. (1930) Phys. Rev., 36, 57.

    Google Scholar 

  • Spoel, D. (1996) Structure and Dynamics of Peptides: Theoretical Aspects of Protein Folding, Thesis, University Groningen, 23–28.

  • Sternberg, U. (1988) J. Mol. Phys., 63, 249.

    Google Scholar 

  • Sternberg, U. and Priess, W. (1997) J. Magn. Reson., 125, 8–19.

    Google Scholar 

  • Stillman, M.J., Shaw, C.F. and Suzuki, K.T. (1992) Methallothioneins, VCH, Weinheim.

    Google Scholar 

  • Tsiveriotis, P., Hadjiliadis, N. and Stavropoulos, G. (1997) Inorg. Chim. Acta, 261, 83–92.

    Google Scholar 

  • Vallee, B.L., Coleman, J.E. and Auld, D.S. (1991) Proc. Natl. Acad. Sci. USA, 88, 999.

    Google Scholar 

  • van Eldrik, R. (1999) Coord. Chem. Rev., 182, 373.

    Google Scholar 

  • Veeman, W.S. (1984) Progr. NMR Spectrosc., 20, 193–235.

    Google Scholar 

  • Vuister, G.W., Delaglio, F. and Bax, A. (1992) J. Am. Chem. Soc., 114, 9674–9675.

    Google Scholar 

  • Williamson, M.P. (1993) Nat. Prod. Rep., 207–232.

  • Witter, R., Prieß, W. and Sternberg, U. (2002) J. Comp. Chem., 23, 298–305.

    Google Scholar 

  • Wolinski, K., Hilton, J.F. and Pulay, P. (1990) J. Am. Chem. Soc., 112, 8251.

    Google Scholar 

  • Zhang, X., Hubbard, C.D. and van Eldrik, R. (1996) J. Phys. Chem., 100, 9161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raiker Witter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witter, R., Seyfart, L., Greiner, G. et al. Structure determination of a pseudotripeptide zinc complex with the COSMOS-NMR force field and DFT methods. J Biomol NMR 24, 277–289 (2002). https://doi.org/10.1023/A:1021625231147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021625231147

Navigation