Skip to main content
Log in

Effects of Inert Particles on Liquid Phase Hydrogenation Over Nano-sized Catalysts

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effects of inert particles on the liquid hydrogenation over nano-sized Ni–B catalysts were investigated in a batch reactor. Nitrobenzene hydrogenation was used as a test reaction. The effects of stirring speed and the dispersant/catalysts ratio were investigated. Addition of inert particle in the reaction system of nano-catalysts could increase the reaction conversion significantly. The reaction conversion increased with increasing stirring speeding until 900-rpm, and then decreased. The addition of inert particle to the reaction system could prevent the agglomeration of nano-metals and disperse them over the entire reaction system. Nano-metals were physically attached on the external surface of the inert particles. In addition, the addition of inert particle may enhance the absorption rate of hydrogen in solvent, and resulting in the increase of reaction rate. Both are beneficial to the reaction conversion. The enhancement effect of Al2O3 is much greater than that of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aramendia M.A., V. Borau, J. Gomez & G. Jimenez, 1984. Appl. Catal. 10, 347.

    Google Scholar 

  • Collin D.J. & A.D. Smith, 1982. Hydrogenation of nitrobenzene over a nickel boride catalyst. Ind. Eng. Chem. Prod. Res. Devel. 21, 279.

    Google Scholar 

  • Corrias A., G. Ennas, G. Licheri, G. Marongiu, A. Musinu, G. Paschina, G. Piccaluga, G. Pinna & M. Mgaini, 1988. Fe-Co-B amorphous alloy powder by chemical reduction. J. Mater. Sci. Lett. 7, 407.

    Google Scholar 

  • Deng J.F. & H.Y. Chen, 1993. A novel amorphous Ni-W-P alloy powder and its hydrogenation activity. J. Mater. Sci. Lett. 12, 1508.

    Google Scholar 

  • Fukuoka Y., H. Nagahara & M. Konishi, 1993. A new catalyst for selective partial hydrogenation of benzene. Cat. Soc. Jpn. 35, 34.

    Google Scholar 

  • Holstvoogd R.D., K.J. Ptasinski & W.P.M. van Swaaij, 1986. Penetration model for gas absorption with reaction in a slurry containing fine insoluble particles. Chem. Eng. Sci. 41, 867.

    Google Scholar 

  • Holstvoogd R.D., W.P.M. van Swaaij & L.L. van Dierendonck, 1988. The absorption of gases in aqueous activated carbon slurries enhanced by adsorbing catalytic particles. Chem. Eng. Sci. 43, 2182.

    Google Scholar 

  • Hu Z., J.Y. Shen, Y.N. Fan, Y.F. Nsia & Y. Chen, 1993. Formation of ultrafine amorphous alloy particles with uniform sized by autocatalytic method. J. Mater. Sci. Lett. 12, 1020.

    Google Scholar 

  • Lee S.P. & Y.W. Chen, 1999. Selective hydrogenation of furfural on Ni-P, Ni-B and Ni-P-B ultrafine materials. Ind. Eng. Chem. Res. 38, 2548.

    Google Scholar 

  • Lee S.P. & Y.W. Chen, 2000. Nitrobenzene hydrogenation on Ni-P, Ni-B and Ni-P-B ultrafine materials. J. Mol. Catal. A: Chemical 152, 213-223.

    Google Scholar 

  • Li C., Y.W. Chen & W.J. Wang, 1994. Nitrobenzene hydrogenation over aluminum borate-supported platinum catalyst. Appl. Cal. A.: General 119, 185.

    Google Scholar 

  • Linderoth S., S. Morup, A. Meagher, J. Larsen, M.D. Bentzon, B.S. Clausen, C.J.W. Koch, S. Wells & S.W. Charles, 1989. Amorphous to crystalline transformation of ultrafine Fe62B38 Particles. J. Magn. Mang. Mater. 81, 138.

    Google Scholar 

  • Linderoth S. & S. Morup, 1990. Chemically prepared amorphous Fe-B particles: Influence of pH on the composition. J. Appl. Phys. 67, 4472.

    Google Scholar 

  • Lindner D., M. Werner & A. Schumpe, 1998. Hydrogen transfer in slurries of carbon supported catalyst (HPO process). AIChE J. 34, 1691.

    Google Scholar 

  • Liu I.H., C.Y. Chang, S.M. Shih, I.C. Chiu, H.W. Chu & C.H. Chen, 1993. Absorption removal of carbon dioxide in the presence of inert solid particles (flour powder). J. Chin. Inst. Engrs. 16, 615.

    Google Scholar 

  • Liu I.H., C.Y. Chang, S.C. Liu, I.C. Chang & S.M. Shin, 1994. Absorption removal of sulfur dioxide by falling water droplets in the presence of inert solid particles. Atmo. Envir. 21, 3409.

    Google Scholar 

  • Mitsui O. & Y. Fukuoka, 1985. (Asahi Chem. Ind.) US Patent 4 678 861.

  • Marrone G.M. & D.J. Kirwan, 1986. Mass transfer to suspended particles in gas-liquid agitated systems. AIChE J. 32, 523.

    Google Scholar 

  • Meng H.M., C.Y. Chang & I.C. Chiu, 1993. Effects of inert solid particles (flour powder) on absorption removal of ammonia. J. Chin. Inst. Environ. Eng. 3, 65.

    Google Scholar 

  • Nagahara H. & M. Kohishi, 1986a. (Asahi Chem. Ind.) Eur. Patent 220 525.

  • Nagahara H. & M. Kohishi, 1986b. (Asahi Chem. Ind.) Jpn. Patent 6 281 332.

  • Rajadhyaksha R.A. & A.L. Karwa, 1986. Solvent effects in catalytic hydrogenation. Chem. Eng. Sci. 41, 1765-1770.

    Google Scholar 

  • Saida J., A. Inoue & T. Masumoto, 1991. Preparation of ultra-fine amorphous powders by the chemicals reduction method and the properties of their sintered products. Mater. Sci. Eng. 133, 771.

    Google Scholar 

  • Wisniak J. & M. Klein, 1984. Reduction of nitrobenzene to aniline. Ind. Eng. Chem. Prod. Res. Dev. 23, 44.

    Google Scholar 

  • Wonterghem J.V., S. Morup, J.W. Christion, S. Charles & W.S. Wells, 1986. Formation of ultra-fine amorphous alloy particles reduction in aqueous solution. Nature 322, 622.

    Google Scholar 

  • Yao H.C. & P.H. Emmett, 1962. Kinetics of liquid phase hydrogenation. IV. Hydrogenation of nitrocompounds over raney nickel and nickel powder catalysts. J. Am. Chem. Soc. 84, 1086.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YW., Hsieh, TY. Effects of Inert Particles on Liquid Phase Hydrogenation Over Nano-sized Catalysts. Journal of Nanoparticle Research 4, 455–461 (2002). https://doi.org/10.1023/A:1021602322426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021602322426

Navigation