Skip to main content
Log in

Differential Light Scattering Spectroscopy for Studying Biospecific Assembling of Gold Nanoparticles with Protein or Oligonucleotide Probes

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A new method is proposed for studying biospecific interactions in systems of conjugates of colloidal gold nanoparticles. The method is based on measuring the differential spectra of light scattered at 90° within wavelength range 350–800 nm. Addition of complementary component to bioconjugate probe results in the nanoparticle aggregation that can be monitored by the light scattering or extinction spectra. To this end, we developed a special attachment to a Specord M-40 spectrophotometer and a corresponding measurement procedure called by us the differential light scattering spectroscopy. The method is compared with the common spectrophotometry as applied to colloidal gold conjugates to various polymers including proteins and oligonucleotides. Our experiments with the gold nanoparticles of different sizes showed a higher potential sensitivity of the suggested method as compared to spectrophotometry. It is expected that the differential light scattering spectroscopy can be used to develop sensitive analytical biospecific test for various biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Schalkhammer, Th., Chem. Mon., 1998, vol. 129, p. 1067.

    Google Scholar 

  2. Lyon, L.A., Musick, M.D., and Natan, M.J., Anal. Chem., 1998, vol. 70, p. 5177.

    PubMed  Google Scholar 

  3. Mullett, W.M., Lai, E.P.C., and Yeung, J.M., Methods, 2000, vol. 22, p. 77.

    PubMed  Google Scholar 

  4. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J., Nature, 1996, vol. 382, p. 607.

    PubMed  Google Scholar 

  5. Boal, A.K., Ilhan, F., DeRoucher, J.E., et al., Nature, 2000, vol. 404, p. 746.

    Google Scholar 

  6. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  7. Yguerabide, J. and Yguerabide, E., Anal. Biochem., 1998, vol. 262, p. 137.

    PubMed  Google Scholar 

  8. Yguerabide, J. and Yguerabide, E., Anal. Biochem., 1998, vol. 262, p. 157.

    PubMed  Google Scholar 

  9. Storhoff, J.J., Lazarides, A.A., Mucic, R.C., et al., J. Am. Chem. Soc., 2000, vol. 122, p. 4640.

    Article  Google Scholar 

  10. Lazarides, A.A., Lance, K.K., Jensen, T.R., and Schatz, G.C., THEOCHEM, 2000, vol. 529, p. 59.

    Google Scholar 

  11. Schatz, G.C., THEOCHEM, 2001, vol. 573, p. 73.

    Google Scholar 

  12. Stoscheck, C.M., Anal. Biochem., 1987, vol. 160, p. 301.

    PubMed  Google Scholar 

  13. Ciesiolka, T. and Gabius, H.J., Anal. Biochem., 1988, vol. 168, p. 280.

    PubMed  Google Scholar 

  14. Leuvering, J.H., Thal, P.J., van der Waart, M., and Schuurs, A.H., J. Immunoassay, 1980, vol. 1, p. 77.

    PubMed  Google Scholar 

  15. Martin, J.M.C., Paques, M., van der Velden-De Groot, T.A., and Beuvery, E.C., J. Immunoassay, 1990, vol. 11, p. 31.

    PubMed  Google Scholar 

  16. Englebienne, P., Van Hoonacker, A., and Valsamis, J., Clin. Chem., 2000, vol. 46, p. 2000.

    PubMed  Google Scholar 

  17. Englebienne, P., Van Hoonacker, A., and Verhas, M., Analyst (Cambridge, UK), 2001, vol. 126, p. 1645.

    Google Scholar 

  18. Sorensen, C.M., Aerosol Sci. Technol., 2000, vol. 35, p. 648.

    Google Scholar 

  19. Souza, G.R. and Miller, J.H., J. Am. Chem. Soc., 2001, vol. 123, p. 6734.

    PubMed  Google Scholar 

  20. Khlebtsov, N.G., Dykman, L.A., Krasnov, Ya.M., and Melnikov, A.G., in Electromagnetic and Light Scattering by Nonspherical Particles: Theory and Applications, Obelleiro, F., Rodriguez, J.L., and Wriedt, T., Eds., Vigo: Vigo Univ. Press, 1999, p. 43.

    Google Scholar 

  21. Khlebtsov, N.G., Dykman, L.A., Krasnov, Ya.M., and Mel'nikov, A.G., Kolloidn. Zh., 2000, vol. 62, p. 844.

    Google Scholar 

  22. Bogatyrev, V.A., Medvedev, V.A., Dykman, L.A., Khlebtsov, N.G., in Optical Technologies in Biophysics and Medicine II, Tuchin, V.V., Ed., Bellingham: SPIE Publ., Proc. SPIE, 2001, vol. 4241, p. 42.

    Google Scholar 

  23. Frens, G., Nature Phys. Sci., 1973, vol. 241, p. 20.

    Google Scholar 

  24. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Melnikov, A.G., J. Colloid Interface Sci., 1996, vol. 180, p. 436.

    Google Scholar 

  25. Colloidal Gold: Principles, Methods and Applications, Hayat, M.A., Ed., San Diego: Academic, 1989.

    Google Scholar 

  26. Dykman, L.A. and Bogatyrev, V.A., Biokhimiya, 1997, vol. 62, p. 411.

    Google Scholar 

  27. Storhoff, J.J., Elghanian, R., Mucic, R.C., et al., J. Am. Chem. Soc., 1998, vol. 120, p. 1959.

    Google Scholar 

  28. Plotnikov, V.K. and Bakaldina, N.B., Plant Mol. Biol., 1996, vol. 31, p. 507.

    PubMed  Google Scholar 

  29. Plotnikov, V.K., Bakaldina, N.B., and Bibishev, V.A., RF Patent no. 2 084 133, 1997.

  30. Moeremans, M., Daneels, G., and De Mey, J., Anal. Biochem., 1985, vol. 145, p. 315.

    PubMed  Google Scholar 

  31. Dykman, L.A., Krasnov, Ya.M., Bogatyrev, V.A., and Khlebtsov, N.G., in Optical Technologies in Biophysics and Medicine II, Tuchin, V.V., Ed., Bellingham: SPIE Publ., Proc. SPIE, 2001, vol. 4241, p. 37.

    Google Scholar 

  32. Egorov, A.M. and Dikov, M.M., Zh. Vses. Khim. O-va. im. D. I. Mendeleeva, 1982, vol. 27, p. 381.

    Google Scholar 

  33. Bogatyrev, V.A., Dykman, L.A., Krasnov, Ya.M., et al., in Optical Technologies in Biophysics and Medicine III, Tuchin, V.V., Ed., Bellingham: SPIE Publ., Proc. SPIE, 2002, vol. 4707 (in press).

    Google Scholar 

  34. Lazarides, A.A. and Schatz, G.C., J. Chem. Phys., 2000, vol. 112, no. 6, p. 2987.

    Google Scholar 

  35. Lazarides, A.A. and Schatz, G.C., J. Phys. Chem. B, 2000, vol. 104, p. 460.

    Google Scholar 

  36. Lazarides, A.A. and Schatz, G.C., Mater. Res. Soc. Symp. Proc., 2001, vol. 635, p. C6.5.1.

    Google Scholar 

  37. Kelly, K.L., Lazarides, A.A., and Schatz, G.C., Nanotechnology, 2001, vol. 3, p. 67.

    Google Scholar 

  38. Draine, B.T. and Goodman, J.J., Astrophys. J., 1993, vol. 405, p. 685.

    Google Scholar 

  39. Mohamed, M.B., Volkov, V., Link, S., and El-Sayed, M.A., Chem. Phys. Lett., 2000, vol. 317, p. 517.

    Google Scholar 

  40. Markel, V.A., Muratov, L.S., Stockman, M.L., and George, T.F., Phys. Rev. B: Condens. Matter, 1991, vol. 43, no. 10, p. 8183.

    Google Scholar 

  41. Tsai, D.R., Kovacs, J., Wang, Zh., et al., Phys. Rev. Lett., 1994, vol. 72, p. 4149.

    PubMed  Google Scholar 

  42. Markel, V.A., Shalaev, V.M., Stechel, E.B., et al., Phys.iRev. B: Condens. Matter, 1996, vol. 53, p. 2425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogatyrev, V.A., Dykman, L.A., Krasnov, Y.M. et al. Differential Light Scattering Spectroscopy for Studying Biospecific Assembling of Gold Nanoparticles with Protein or Oligonucleotide Probes. Colloid Journal 64, 671–680 (2002). https://doi.org/10.1023/A:1021585702894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021585702894

Keywords

Navigation